Giải bài 12 trang 91 sách bài tập toán 11 - Chân trời sáng tạo tập 1Cho nửa đường tròn đường kính \(AB = 2\). Đường thẳng d thay đổi luôn đi qua A, cắt nửa đường tròn tại C và tạo với đường thẳng AB góc \(\alpha \left( {0 < \alpha < \frac{\pi }{2}} \right)\). Kí hiệu diện tích tam giác ABC là \(S\left( \alpha \right)\) (phụ thuộc vào \(\alpha \)). Xét tính liên tục của hàm số \(S\left( \alpha \right)\) trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\) và tính các giới hạn \(\mathop {\lim }\limits_{\alpha \to {0^ + }} S\left( \alpha \right)\); Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Cho nửa đường tròn đường kính \(AB = 2\). Đường thẳng d thay đổi luôn đi qua A, cắt nửa đường tròn tại C và tạo với đường thẳng AB góc \(\alpha \left( {0 < \alpha < \frac{\pi }{2}} \right)\). Kí hiệu diện tích tam giác ABC là \(S\left( \alpha \right)\) (phụ thuộc vào \(\alpha \)). Xét tính liên tục của hàm số \(S\left( \alpha \right)\) trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\) và tính các giới hạn \(\mathop {\lim }\limits_{\alpha \to {0^ + }} S\left( \alpha \right)\); \(\mathop {\lim }\limits_{\alpha \to {{\frac{\pi }{2}}^ - }} S\left( \alpha \right)\) Phương pháp giải - Xem chi tiết Sử dụng kiến thức về tính liên tục của hàm số sơ cấp để tính: Hàm số \(y = \sin x\) liên tục trên \(\mathbb{R}\). Lời giải chi tiết \(S\left( \alpha \right) = \frac{1}{2}AC.BC = \frac{1}{2}.2\cos \alpha .2\sin \alpha = \sin 2\alpha ,\alpha \in \left( {0;\frac{\pi }{2}} \right)\). Do hàm số \(y = \sin 2\alpha \) liên tục trên \(\mathbb{R}\) nên hàm số \(y = S\left( \alpha \right)\) liên tục trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\). \(\mathop {\lim }\limits_{\alpha \to {0^ + }} S\left( \alpha \right) = \mathop {\lim }\limits_{\alpha \to {0^ + }} \sin 2\alpha = \sin 0 = 0\); \(\mathop {\lim }\limits_{\alpha \to {{\frac{\pi }{2}}^ - }} S\left( \alpha \right) = \mathop {\lim }\limits_{\alpha \to {{\frac{\pi }{2}}^ - }} \sin 2\alpha = \sin \left( {2.\frac{\pi }{2}} \right) = 0\)
Quảng cáo
|