Giải bài 12 trang 60 sách bài tập toán 10 - Chân trời sáng tạo

Hãy tìm tọa độ một vectơ đơn vị

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Quảng cáo

Đề bài

Cho vectơ \(\overrightarrow a  = \left( {2;2} \right)\). Hãy tìm tọa độ một vectơ đơn vị \(\overrightarrow e \) cùng hướng với vectơ \(\overrightarrow a \)

Phương pháp giải - Xem chi tiết

Cho hai vectơ \(\overrightarrow a  = \left( {{a_1},{a_2}} \right),\overrightarrow b  = \left( {{b_1},{b_2}} \right)\).

Hai vectơ được gọi là cùng hướng khi \(\overrightarrow a  = k\overrightarrow b \left( {k > 0} \right)\)

Lời giải chi tiết

Ta có: \(\vec a = \left( {2;2} \right) = \frac{2}{k}\left( {k;k} \right) \)

\(\Rightarrow \) Với \(k>0\) thì \(\vec e = (k;k)\) là 1 vectơ cùng hướng với \(\overrightarrow a \) 

Để \(\vec e\) là vecto đơn vị thì \(\left| {\vec e} \right| = 1\)

\(\Leftrightarrow \sqrt {{k^2} + {k^2}}  = 1 \Leftrightarrow 2{k^2} = 1 \Leftrightarrow k = \frac{{\sqrt 2 }}{2}\) (vì \(k>0\))

Vậy vecto đơn vị cùng hướng với \(\vec a\) là \(\vec e = (\frac{{\sqrt 2 }}{2};\frac{{\sqrt 2 }}{2})\).

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close