Giải bài 1 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2Cho tứ diện ABCD có tam giác BCD vuông cân tại B và \(AB \bot \left( {BCD} \right)\). Cho biết \(BC = a\sqrt 2 ,AB = \frac{a}{{\sqrt 3 }}\). Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Cho tứ diện ABCD có tam giác BCD vuông cân tại B và \(AB \bot \left( {BCD} \right)\). Cho biết \(BC = a\sqrt 2 ,AB = \frac{a}{{\sqrt 3 }}\). Xác định và tính góc giữa hai mặt phẳng (ACD) và (BCD). Phương pháp giải - Xem chi tiết Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Góc giữa hai mặt phẳng cắt nhau bằng góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng và vuông góc với giao tuyến của hai mặt phẳng. Lời giải chi tiết Gọi I là trung điểm của CD. Tam giác BCD vuông cân tại B nên BI là đường trung tuyến đồng thời là đường cao. Do đó, \(BI \bot CD\). Tam giác BCD vuông cân tại B nên \(BC = BD = a\sqrt 2 \) Vì \(AB \bot \left( {BCD} \right),BD \subset \left( {BCD} \right) \Rightarrow AB \bot BD\). Do đó, tam giác ABD vuông tại B. Áp dụng định lí Pythagore vào tam giác ABD vuông tại B có: \(AD = \sqrt {A{B^2} + B{D^2}} = \sqrt {{{\left( {\frac{a}{{\sqrt 3 }}} \right)}^2} + {{\left( {a\sqrt 2 } \right)}^2}} = \frac{{a\sqrt {21} }}{3}\) Vì \(AB \bot \left( {BCD} \right),BC \subset \left( {BCD} \right) \Rightarrow AB \bot BC\). Do đó, tam giác ABC vuông tại B. Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có: \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{{\left( {\frac{a}{{\sqrt 3 }}} \right)}^2} + {{\left( {a\sqrt 2 } \right)}^2}} = \frac{{a\sqrt {21} }}{3}\) Do đó, \(AC = AD\) nên tam giác ACD cân tại A. Nên AI là đường trung tuyến đồng thời là đường cao. Suy ra, \(AI \bot CD\). Ta có: CD là giao tuyến của hai mặt phẳng (BCD) và (ACD)\(BI \bot CD,AI \bot CD,BI \subset \left( {BCD} \right),AI \subset \left( {ACD} \right)\). Nên \(\left( {\left( {ACD} \right),\left( {BCD} \right)} \right) = \left( {AI,BI} \right) = \widehat {AIB}\) Áp dụng định lí Pythagore vào tam giác BCD vuông tai B có: \(CD = \sqrt {B{C^2} + B{D^2}} = 2a\) Tam giác BCD vuông cân tại B nên \(BI = \frac{{CD}}{2} = a\) Vì \(AB \bot \left( {BCD} \right),BI \subset \left( {BCD} \right) \Rightarrow AB \bot BI\). Do đó, tam giác ABI vuông tại B. Do đó, \(\tan \widehat {AIB} = \frac{{AB}}{{BI}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {AIB} = {30^0}\)
Quảng cáo
|