Giải bài 1 trang 56 SGK Toán 8 tập 2– Chân trời sáng tạoTính độ dài Quảng cáo
Đề bài Tính độ dài \(x\) trong Hình 7.
Video hướng dẫn giải Phương pháp giải - Xem chi tiết Sử dụng Tính chất đường phân giác trong tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề đoạn ấy. Lời giải chi tiết a) Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có: \(\frac{{CD}}{{BD}} = \frac{{AC}}{{AB}} \Leftrightarrow \frac{x}{{2,4}} = \frac{5}{3} \Rightarrow x = \frac{{2,4.5}}{3} = 4\). Vậy \(x = 4\). b) Ta có: \(GH + HF = GF \Rightarrow HF = GF - GH = 20 - x\) Vì \(EH\) là phân giác của góc \(GEF\) nên theo tính chất đường phân giác ta có: \(\frac{{GH}}{{HF}} = \frac{{GE}}{{EF}} \Leftrightarrow \frac{x}{{20 - x}} = \frac{{18}}{{12}} \Leftrightarrow \frac{x}{{20 - x}} = \frac{3}{2} \Rightarrow 2x = 3.\left( {20 - x} \right)\) \( \Leftrightarrow 2x = 60 - 3x \Leftrightarrow 5x = 60 \Rightarrow x = 12\) Vậy \(x = 12\). c) Vì \(RS\) là phân giác của góc \(RPQ\) nên theo tính chất đường phân giác ta có: \(\frac{{PS}}{{SQ}} = \frac{{PR}}{{RQ}} \Leftrightarrow \frac{5}{6} = \frac{{10}}{x} \Rightarrow x = \frac{{10.6}}{5} = 12\). Vậy \(x = 12\).
Quảng cáo
|