Giải bài 1 trang 25 sách bài tập toán 11 - Chân trời sáng tạo tập 2Tính giá trị của các biểu thức Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Quảng cáo
Đề bài Tính giá trị của các biểu thức a) \({\left( {\frac{{27}}{8}} \right)^{\frac{5}{6}}}.{\left( {\frac{{{4^{\frac{3}{2}}}}}{{{3^3}}}} \right)^{\frac{1}{2}}}\); b) \(\log \sqrt 5 + \log \sqrt 2 \); c) \({\left( {\frac{{16}}{{81}}} \right)^{ - \frac{3}{4}}} + {\log _5}\frac{9}{4} + {\log _5}\frac{4}{9}\); d) \({\log _2}7.{\log _3}16.{\log _9}3.{\log _7}9\). Phương pháp giải - Xem chi tiết a) Sử dụng kiến thức về lũy thừa với số mũ để tính: \({\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }}\), \({a^\alpha }.{a^\beta } = {a^{\alpha + \beta }}\) b) Sử dụng kiến thức về phép tính lôgarit để tính: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có: \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\) c) + Sử dụng kiến thức về lũy thừa với số mũ để tính: \({\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }}\) Sử dụng kiến thức về phép tính lôgarit để tính: \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\) d) Sử dụng kiến thức về phép tính lôgarit để tính: Cho các số dương a, b, N, \(a \ne 1,b \ne 1\) ta có: \({\log _a}N = \frac{{{{\log }_b}N}}{{{{\log }_b}a}}\), \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\) Lời giải chi tiết a) \({\left( {\frac{{27}}{8}} \right)^{\frac{5}{6}}}.{\left( {\frac{{{4^{\frac{3}{2}}}}}{{{3^3}}}} \right)^{\frac{1}{2}}} \) \( = {\left( {\frac{3}{2}} \right)^{3.\frac{5}{6}}}{\left( {\frac{{{2^{2.\frac{3}{2}}}}}{{{3^3}}}} \right)^{\frac{1}{2}}} \) \( = {\left( {\frac{3}{2}} \right)^{\frac{5}{2}}}.{\left( {\frac{2}{3}} \right)^{\frac{3}{2}}} \) \( = {\left( {\frac{3}{2}} \right)^{\frac{5}{2}}}.{\left( {\frac{3}{2}} \right)^{\frac{{ - 3}}{2}}} \) \( = {\left( {\frac{3}{2}} \right)^{\frac{5}{2} + \frac{{ - 3}}{2}}} \) \( = \frac{3}{2}\); b) \(\log \sqrt 5 + \log \sqrt 2 \) \( = \log \left( {\sqrt 5 .\sqrt 2 } \right) \) \( = \log \sqrt {10} \) \( = \log {10^{\frac{1}{2}}} \) \( = \frac{1}{2}\); c) \({\left( {\frac{{16}}{{81}}} \right)^{ - \frac{3}{4}}} + {\log _5}\frac{9}{4} + {\log _5}\frac{4}{9} \) \( = {\left( {\frac{2}{3}} \right)^{4.\frac{{ - 3}}{4}}} + {\log _5}\left( {\frac{9}{4}.\frac{4}{9}} \right) \) \( = {\left( {\frac{2}{3}} \right)^{ - 3}} + {\log _5}1 \) \( = {\left( {\frac{3}{2}} \right)^3} \) \( = \frac{{27}}{8}\); d) \({\log _2}7.{\log _3}16.{\log _9}3.{\log _7}9 \) \( = \frac{{{{\log }_9}7}}{{{{\log }_9}2}}.{\log _7}9.2{\log _3}4.\frac{1}{2}{\log _3}3 \) \( = \frac{1}{{{{\log }_7}9.{{\log }_9}2}}.{\log _7}9.{\log _3}4\) \( \) \( = \frac{{2{{\log }_3}2}}{{\frac{1}{2}{{\log }_3}2}} \) \( = 4\)
Quảng cáo
|