Cho tam giác ABC và điểm S không thuộc mặt phẳng (ABC). Lấy D, E là các điểm lần lượt thuộc các cạnh SA, SB và D, E khác S. a) Đường thẳng DE có nằm trong mặt phẳng (SAB) không? b) Giả sử DE cắt AB tại F. Chứng minh rằng F là điểm chung của hai mặt phẳng (SAB) và (CDE).
Xem chi tiếtCho hình chóp S.ABCD có đáy ABCD là hình thang, AB // CD và AB < CD. Xác định giao tuyến của hai mặt phẳng sau: a) (SAD) và (SBC) b) (SAB) và (SCD) c) (SAC) và (SBD)
Xem chi tiếtCho hình thang ABCD có hai đáy AB và CD. Qua các điểm A, D lần lượt vẽ các đường thẳng m, n song song với nhau và không nằm trong mặt phẳng (ABCD). Chứng minh rằng mp(B,m) và mp(C,n) song song với nhau.
Xem lời giảiCho mặt phẳng (P) và hai đường thẳng a, b nằm trong (P). Một đường thẳng c cắt hai đường thẳng a và b taij hai điểm phân biệt. Chứng minh rằng đường thẳng c nằm trong giao tuyến của hai mặt phẳng (ABM) và (SCD).
Xem lời giảiHình 4.65 có thể là hình biểu diễn của một hình lục giác đều hay không? Vì sao?
Xem chi tiếtBạn Nam quan sát thấy dù cửa ra vào được mở ở vị trí nào thì mép trên của cửa luôn song song với một mặt phẳng cố định. Hãy cho biết đó là mặt phẳng nào và giải thích tại sao.
Xem chi tiếtCho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi M là trung điểm của đoạn thẳng SD (H.4.28) a) Xác định giao tuyến của mặt phẳng (MAB) và (SCD) b) Gọi N là giao điểm của đường thẳng SC và mặt phẳng (MAB). Chứng minh rằng MN là đường trung bình của tam giác SCD
Xem lời giảiCho hình lăng trụ tam giác ABC.A’B’C’. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, AA’. a) Xác định giao điểm của mặt phẳng (MNP) với đường thẳng B‘C b) Gọi K là giao điểm của mặt phẳng (MNP) với đường thẳng B’C. Tính tỉ số (frac{{KB'}}{{KC}})
Xem chi tiếtCho hình tứ diện SABC. Trên cạnh SA lấy các điểm ({A_1},{A_2})sao cho (A{A_1} = {A_1}{A_2} = {A_2}S.) Gọi (P) và (Q) là hai mặt phẳng song song với mặt phẳng (ABC) và lần lượt đi qua ({A_1},{A_2}.) Mặt phẳng (P) cắt các cạnh SB, SC lần lượt tại ({B_1},{C_1}.) Mặt phẳng (Q) cắt các canhj SB, SC lần lượt tại ({B_2},{C_2}.) Chứng minh (B{B_1} = {B_1}{B_2} = {B_2}S) và (C{C_1} = {C_1}{C_2} = {C_2}S).
Xem lời giảiCho hình chóp tứ giác S.ABCD và M là một điểm thuộc cạnh SC (M khác S, C). Giả sử hai đường thẳng AB và CD cắt nhau tại N. Chứng minh rằng đường thẳng MN là giao tuyến của hai mặt phẳng (ABM) và (SCD).
Xem lời giải