🔥 2K8 CHÚ Ý! MỞ ĐẶT CHỖ SUN 2026 - LUYỆN THI TN THPT - ĐGNL - ĐGTD

🍀 ƯU ĐÃI -70%! XUẤT PHÁT SỚM‼️

Chỉ còn 2 ngày
Xem chi tiết

Câu hỏi 5 trang 89 SGK Đại số và Giải tích 11

Cho các dãy số...

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho các dãy số \(({u_n})\) và \(({v_n})\) với \({u_n}= 1 + \) \({1 \over n}\);  \({v_n}= 5n – 1.\) 

LG a

Tính \({u_{n+1}}\), \({v_{n+1}}\)

Phương pháp giải:

Thay giá trị \(n+1\) vào hai dãy tìm \({u_{n+1}}\), \({v_{n+1}}\)

Lời giải chi tiết:

\({u_{n}} = 1 + \)\({1 \over {n+1}}\); \({v_{n+1}}= 5(n + 1) - 1 = 5n + 4\)

Quảng cáo

Lộ trình SUN 2026

LG b

Chứng minh  \({u_{n+1}} <u_{n}\) và \({v_{n+1}} > v_{n}\) , với mọi \(n \in N*\).

Phương pháp giải:

Xét hiệu \({u_{n + 1}} - {u_n},{v_{n + 1}} - {v_n}\)

Lời giải chi tiết:

Ta có:

\({u_{n + 1}} - {u_n} = (1 + {1 \over {n + 1}}) - (1 + {1 \over n}) \) \(= {1 \over {n + 1}} - {1 \over n}  = \frac{{n - \left( {n + 1} \right)}}{{n\left( {n + 1} \right)}}= {{ - 1} \over {n(n + 1)}}<0\)

⇒ \({u_{n + 1}} - {u_n} < 0 \) ⇒ \({u_{n+1}} <u_{n}\) , \(\forall n \in N*\).

\({v_{n + 1}} - {v_n} \) \(= (5n + 4) - (5n - 1) = 5 > 0\)

⇒ \({v_{n + 1}} - {v_n}> 0\)  ⇒ \({v_{n+1}} > v_{n}\)  ,\(\forall n \in N*\).

Loigiaihay.com

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

close