Giải bài 8 trang 90 SGK Giải tích 12

Giải các bất phương trình

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình

LG a

a) \({2^{2x - 1}} + {\rm{ }}2{^{2x - 2}} + {\rm{ }}{2^{2x - 3}} \ge {\rm{ }}448\)

Phương pháp giải:

Đặt nhân tử chung \(2^{2x-3}\), đưa bất phương trình mũ về dạng cơ bản: 

\({a^x} \ge b \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\x \ge {\log _a}b\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\x \le {\log _a}b\end{array} \right.\end{array} \right.\)

Lời giải chi tiết:

\(\displaystyle \begin{array}{l}a)\,\,\,{2^{2x - 1}} + {2^{2x - 2}} + {2^{2x - 3}} \ge 448\\\Leftrightarrow {2^{2x - 3}}{.2^2} + {2^{2x - 3}}{.2^1} + {2^{2x - 3}} \ge 448\\\Leftrightarrow {2^{2x - 3}}\left( {4 + 2 + 1} \right) \ge 448\\\Leftrightarrow {7.2^{2x - 3}} \ge 448\\\Leftrightarrow {2^{2x - 3}} \ge 64\\\Leftrightarrow 2x - 3 \ge {\log _2}64 = 6\\\Leftrightarrow x \ge \dfrac{9}{2}\end{array}\)

Vậy tập nghiệm của bất phương trình đã cho là: \(\displaystyle S=\left[{{9}\over {2}}; +∞\right)\).

LG b

b) \({\left( {0,4} \right)^x}-{\rm{ }}{\left( {2,5} \right)^{x + 1}} > {\rm{ }}1,5\)

Phương pháp giải:

Đặt ẩn phụ \(t = {\left( {0,4} \right)^x}\), để ý rằng: \(0,4.2,5 = 1 \Rightarrow {\left( {0,4} \right)^x}.{\left( {2,5} \right)^x} = 1\) \(\Rightarrow {\left( {2,5} \right)^x} = \dfrac{1}{{{{\left( {0,4} \right)}^x}}}\)

Lời giải chi tiết:

\(\displaystyle \begin{array}{l}\,\,{\left( {0,4} \right)^x} - {\left( {2,5} \right)^{x + 1}} > 1,5\\\Leftrightarrow {\left( {0,4} \right)^x} - 2,5.{\left( {2,5} \right)^x} > 1,5\\\Leftrightarrow {\left( {0,4} \right)^x} - 2,5.\dfrac{1}{{{{\left( {0,4} \right)}^x}}} > 1,5\end{array}\)

Đặt \(\displaystyle t = {(0,4)}^x> 0\), bất phương trình đã cho trở thành:

\(\displaystyle \eqalign{
& t - {{2,5} \over t} > 1,5 \cr & \Leftrightarrow {t^2} - 1,5t - 2,5 = 0\cr &\Leftrightarrow 2{t^2} - 3t - 5 > 0 \cr 
& \Leftrightarrow \left[ \matrix{
t < - 1 \hfill \cr 
t > 2,5 \hfill \cr} \right. \cr} \)

Do \(\displaystyle t = {(0,4)}^x> 0\), bất phương trình đã cho tương đương với:

\(\displaystyle {\left( {0,4} \right)^x} > {\rm{ }}2,5{\rm{ }} \Leftrightarrow {\rm{ }}{\left( {0,4} \right)^x} > {\rm{ }}{\left( {0,4} \right)^{ - 1}} \) \(\Leftrightarrow {\rm{ }}x{\rm{ }} < {\rm{ }} - 1\)

Vậy tập nghiệm của bất phương trình là \(\displaystyle S = \left( { - \infty ; - 1} \right)\).

Cách trình bày khác:

\( \Leftrightarrow {\left( {\dfrac{2}{5}} \right)^x} > {\left( {\dfrac{2}{5}} \right)^{ - 1}}\)

Vậy tập nghiệm của bất phương trình là \(\displaystyle S = \left( { - \infty ; - 1} \right)\).

LG c

c) \({\log _3}\left[ {{{\log }_{{1 \over 2}}}({x^2} - 1)} \right] < 1\)

Phương pháp giải:

Giải bất phương trình logarit cơ bản:

\({\log _a}f\left( x \right) < b \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\f\left( x \right) < {a^b}\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\f\left( x \right) > {a^b}\end{array} \right.\end{array} \right.\)

Lời giải chi tiết:

ĐK: \(\displaystyle \left\{ \begin{array}{l}{\log _{\frac{1}{2}}}\left( {{x^2} - 1} \right) > 0\\{x^2} - 1 > 0\end{array} \right. \) \(\displaystyle \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 1 < {\left( {\dfrac{1}{2}} \right)^0} = 1\\{x^2} - 1 > 0\end{array} \right.\) \(\displaystyle \Leftrightarrow \left\{ \begin{array}{l}- \sqrt 2 < x < \sqrt 2 \\\left[ \begin{array}{l}x > 1\\x < - 1\end{array} \right.\end{array} \right.\) \(\displaystyle \Leftrightarrow x \in \left( { - \sqrt 2 ;-1} \right) \cup \left( {1;\sqrt 2 } \right)\)

Ta có:

\(\displaystyle \begin{array}{l}\,\,\,\,\,{\log _3}\left[ {{{\log }_{\frac{1}{2}}}\left( {{x^2} - 1} \right)} \right] < 1\\\Leftrightarrow 0< {\log _{\frac{1}{2}}}\left( {{x^2} - 1} \right) < {3^1} = 3\\\left( {Do\,3 > 1} \right)\\\Leftrightarrow {\left( {\dfrac{1}{2}} \right)^0} > {x^2} - 1 > {\left( {\dfrac{1}{2}} \right)^3} = \dfrac{1}{8}\\ \left( {Do\,\,0 < \,\dfrac{1}{2} < 1} \right)\\\Leftrightarrow 2 > {x^2} > \dfrac{9}{8}\end{array}\)

\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
{x^2} < 2\\
{x^2} > \dfrac{9}{8}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
- \sqrt 2 < x < \sqrt 2 \\
\left[ \begin{array}{l}
x > \dfrac{3}{{2\sqrt 2 }}\\
x < - \dfrac{3}{{2\sqrt 2 }}
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\dfrac{3}{{2\sqrt 2 }} < x < \sqrt 2 \\
- \sqrt 2 < x < - \dfrac{3}{{2\sqrt 2 }}
\end{array} \right.
\end{array}\)

Kết hợp điều kiện ta có: \(\displaystyle x \in \left( { - \sqrt 2 ; - \dfrac{3}{{2\sqrt 2 }}} \right) \cup \left( {\dfrac{3}{{2\sqrt 2 }};\sqrt 2 } \right)\)

Vậy tập nghiệm của bất phương trình là: \(\displaystyle S = \left( { - \sqrt 2 ; - \dfrac{3}{{2\sqrt 2 }}} \right) \cup \left( {\dfrac{3}{{2\sqrt 2 }};\sqrt 2 } \right)\).

LG d

d) \({\log _{0,2}}^2x - 5.{\log _{0,2}}x <  - 6\)

Phương pháp giải:

Đặt ẩn phụ \(t = {\log _{0,2}}x\).

Lời giải chi tiết:

\(\displaystyle {\log _{0,2}}^2x - 5.{\log _{0,2}}x <  - 6\)

ĐK: \(\displaystyle x>0\).

Đặt \(\displaystyle t{\rm{ }} = {\rm{ }}{\log_{0,2}}x\). Bất phương trình trở thành

\(\displaystyle {t^2}-{\rm{ }}5t{\rm{ }} + {\rm{ }}6{\rm{ }} < {\rm{ }}0{\rm{ }} \Leftrightarrow {\rm{ }}2{\rm{ }} < {\rm{ }}t{\rm{ }} < {\rm{ }}3\)

Suy ra: \(\displaystyle 2 < {\log _{0,2}}x < 3 \Leftrightarrow {(0,2)^3} < x < {(0,2)^2}\) \(\displaystyle  \Leftrightarrow {1 \over {125}} < x < {1 \over {25}}(tm \,\, x>0) \)

Vậy tập nghiệm của bất phương trình là \(\displaystyle S=\left({1 \over {125}},{1 \over {25}}\right)\)

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close