Bài 8 trang 62 SGK Hình học 10

Cho tam giác ABC. Chứng minh rằng:

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác ABC. Chứng minh rằng:

LG a

Góc A nhọn khi và chỉ khi a2<b2+c2

Phương pháp giải:

do 00<A<1800 nên A nhọn khi và chỉ khi cosA>0

Lời giải chi tiết:

Theo hệ quả định lí cosin: cosA=b2+c2a22bc.

Khi đó:

a2<b2+c2b2+c2a2>0

2bc>0 nên b2+c2a22bc>0

cosA>0

A là góc nhọn.

Vậy góc A nhọn khi và chỉ khi a2<b2+c2

LG b

Góc A tù khi và chỉ khi a2>b2+c2

Phương pháp giải:

do 00<A<1800 nên A tù khi và chỉ khi cosA<0

Lời giải chi tiết:

a2>b2+c2b2+c2a2<0

2bc>0 nên b2+c2a22bc<0

cosA<0

A là góc tù.

Vậy góc A tù khi và chỉ khi a2>b2+c2

LG c

Góc A vuông khi và chỉ khi a2=b2+c2

Phương pháp giải:

do 00<A<1800 nên A vuông khi và chỉ khi cosA=0

Lời giải chi tiết:

Theo định lí Py-ta-go thì: a2=b2+c2

góc A là góc vuông.

Cách trình bày khác:

Góc A vuông cosA=cos900=0

b2+c2a22bc=0 b2+c2a2=0 b2+c2=a2

Loigiaihay.com

  • Bài 9 trang 62 SGK Hình học 10

    Giải bài 9 trang 62 SGK Hình học 10. Cho tam giác ANC có góc A = 600, BC = 6. Tính bán kính đường tròn ngoại tiếp tam giác đó.

  • Bài 10 trang 62 SGK Hình học 10

    Giải bài 10 trang 62 SGK Hình học 10. Cho tam giác ABC có a = 12, b = 16, c = 20. Tính diện tích S tam giác, chiều cao ha, các bán kính R, r của các đường tròn ngoại tiếp...

  • Bài 11 trang 62 SGK Hình học 10

    Giải bài 11 trang 62 SGK Hình học 10. Trong tập hợp các tam giác có hai cạnh là a và b. Tìm tam giác có diện tích lớn nhất.

  • Bài 1 trang 63 SGK Hình học 10

    Giải bài 1 trang 63 SGK Hình học 10. Trong các đẳng thức sau đây, đẳng thức nào đúng?

  • Bài 2 trang 63 SGK Hình học 10

    Giải bài 2 trang 63 SGK Hình học 10. Cho α và β là hai góc khác nhau và bù nhau. Trong các đẳng thức sau đây, đẳng thức nào sai?

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

close