Câu 7 trang 239 SBT Đại số 10 Nâng cao

Giải bài tập Câu 7 trang 239 SBT Đại số 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải và biện luận các phương trình sau theo tham số m:

LG a

\({m^2}x + 3{m^2} = 9\left( {x + m} \right);\)

Lời giải chi tiết:

 Ta có

 \(\begin{array}{l}m{x^2} - 3{m^2} = 9\left( {x + m} \right)\\ \Leftrightarrow \left( {{m^2} - 9} \right)x = 3m\left( {m + 3} \right)\end{array}\)  

- Nếu \(m \ne  \pm 3\) thì phương trình có nghiệm duy nhất \(x = \dfrac{{3m}}{{m - 3}}\).

- Nếu \(m =  - 3\) thì phương trình có dạng \(0.x = 0\), nghiệm đúng với mọi \(x \in R\). Tập nghiệm \(S = R.\)

- Nếu \(m = 3\) thì phương trình có dạng \(0.x = 36\) (vô lí). Tập nghiệm \(S = \emptyset \).

LG b

\(m\left( {x + 6} \right) = x + 2{m^2} + 4;\)

Lời giải chi tiết:

Biến đổi phương trình về dạng \(\left( {m - 1} \right)x = 2\left( {m - 1} \right)\left( {m - 2} \right)\).

Phương trình có nghiệm duy nhất \(x = 2\left( {m - 2} \right)\) khi \(m \ne 1\) và nghiệm đúng với mọi \(x \in R\) khi \(m = 1.\)

LG c

\(\left| {mx + x - 1} \right| - \left| {x + 3} \right| = 0;\)

Lời giải chi tiết:

\(\left| {mx + x - 1} \right| = \left| {x - 3} \right|\,\,\,\,\,\left( 1 \right)\)

\( \Leftrightarrow mx + x - 1 = x + 3\) hoặc \(mx + x - 1 =  - x - 3\)

*) \(mx + x - 1 = x + 3 \Leftrightarrow mx = 4\,\,\,\,\,\,\,\left( 2 \right)\)

- Khi m = 0, (2) trở thành \(0.x = 4\) (vô lí) nên phương trình vô nghiệm.

- Khi \(m \ne 0\), (2) có một nghiệm\(x = \dfrac{4}{m}.\)

*) \(mx + x - 1 =  - x - 3 \Leftrightarrow \left( {m + 2} \right)x =  - 2\,\,\,\,\,\left( 3 \right)\)

- Khi \(m =  - 2\); (3) trở thành \(0.x =  - 2\) (vô lí) nên phương trình vô nghiệm.

- Khi \(m \ne  - 2\); (3) có một nghiệm \(x = \dfrac{{ - 2}}{{m + 2}}.\)

Kết luận: Với \(m = 0\) phương trình có nghiệm \(x =  - 1;\)

Với \(m =  - 2\), phương trình có nghiệm \(x =  - 2;\)

Với \(m \ne 0,m \ne 2\), phương trình có nghiệm \(x = \dfrac{4}{m}\) và \(x =  - \dfrac{2}{{m + 2}}\)

LG d

\(\left| {mx + 1} \right| = \left| {2x + m - 1} \right|;\)

Lời giải chi tiết:

Với \(m = 2\) , tập nghiệm \(S = R\).

Với \(m =  - 2\) hoặc \(m =  - 1\), phương trình có nghiệm \(x = 1;\)

Với \(m \ne 2,m \ne  - 2,m \ne  - 1\), phương trình có nghiệm \(x = 1\) và \(x = \dfrac{{ - m}}{{m + 2}}\).

LG e

\(\dfrac{{x + a}}{{a - x}} + \dfrac{{x - a}}{{a + x}} = \dfrac{a}{{{a^2} - {x^2}}}.\)

Lời giải chi tiết:

 Điều kiện của phương trình \(x \ne  \pm a\).

Ta đưa phương trình về dạng \(4ax = a\,\,\,\,\,\,\left( 1 \right)\)

• Nếu \(a = 0\) thì (1) có dạng \(0.x = 0\), phương trình (1) nghiệm đúng với mọi \(x \in R\).

Vậy phương trình đa cho nghiệm đúng với mọi \(x \in R*\).

• Nếu \(a \ne 0\) thì (1) có nghiệm \(x = \dfrac{1}{4}.\) Xét điều kiện \(x \ne  \pm a,\) ta có \(\dfrac{1}{4} =  \pm a \Leftrightarrow a =  \pm \dfrac{1}{4}.\) Vậy khi \(a \ne 0,a \ne  \pm \dfrac{1}{4}\) thì \(x = \dfrac{1}{4}\) là nghiệm của phương trình đã cho.

Kết luận: Với \(a = 0\), tập nghiệm của phương trình là \(S = R*\)

Với \(a = \dfrac{1}{4}\) hoặc \(a =  - \dfrac{1}{4}\), tập nghiệm của phương trình là \(S = \emptyset ;\)

Với \(a \ne 0,a \ne  \pm \dfrac{1}{4}\), tập nghiệm \(S = \left\{ {\dfrac{1}{4}} \right\}\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close