Câu 6.60 trang 206 SBT Đại số 10 Nâng cao

Giải bài tập Câu 6.60 trang 206 SBT Đại số 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tính

LG a

\({\sin ^2}{15^0} + {\sin ^2}{35^0} + {\sin ^2}{55^0} + {\sin ^2}{75^0};\)

Lời giải chi tiết:

) Vì \(\sin {75^0} = \cos {15^0},\sin {55^0} = \cos {35^0}\) nên

\({\sin ^2}{15^0} + {\sin ^2}{35^0} + {\sin ^2}{55^0} + {\sin ^2}{75^0} = 2.\)

LG b

\({\sin ^2}\dfrac{\pi }{8} + {\sin ^2}\dfrac{{3\pi }}{8} + {\sin ^2}\dfrac{{5\pi }}{8} + {\sin ^2}\dfrac{{7\pi }}{8};\)

Lời giải chi tiết:

 Vì

\(\begin{array}{l}\sin \dfrac{{7\pi }}{8} = \sin \left( {\dfrac{{3\pi }}{8} + \dfrac{\pi }{2}} \right) = \cos \dfrac{{3\pi }}{8};\\\sin \dfrac{{5\pi }}{8} = \sin \left( {\dfrac{\pi }{8} + \dfrac{\pi }{2}} \right) = \cos \dfrac{\pi }{8}\end{array}\)

nên \({\sin ^2}\dfrac{\pi }{8} + {\sin ^2}\dfrac{{3\pi }}{8} + {\sin ^2}\dfrac{{5\pi }}{8} + {\sin ^2}\dfrac{{7\pi }}{8} = 2.\)

LG c

 \({\cos ^2}\dfrac{\pi }{{12}} + {\cos ^2}\dfrac{{3\pi }}{{12}} + {\cos ^2}\dfrac{{5\pi }}{{12}} + {\cos ^2}\dfrac{{7\pi }}{{12}} + {\cos ^2}\dfrac{{9\pi }}{{12}} + {\cos ^2}\dfrac{{11\pi }}{{12}}.\)

Lời giải chi tiết:

Tương tự

\(\begin{array}{l}\cos \dfrac{{11\pi }}{{12}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{{5\pi }}{{12}}} \right) =  - \sin \dfrac{{5\pi }}{{12}},\\\cos \dfrac{{9\pi }}{{12}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{{3\pi }}{{12}}} \right) =  - \sin \dfrac{{3\pi }}{{12}},\\\cos \dfrac{{7\pi }}{{12}} = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{{12}}} \right) =  - \sin \dfrac{\pi }{{12}}\end{array}\)

nên ta có:

\({\cos ^2}\dfrac{\pi }{{12}} + {\cos ^2}\dfrac{{3\pi }}{{12}} + {\cos ^2}\dfrac{{5\pi }}{{12}} + {\cos ^2}\dfrac{{7\pi }}{{12}} + {\cos ^2}\dfrac{{9\pi }}{{12}} + {\cos ^2}\dfrac{{11\pi }}{{12}} = 3\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close