Bài 6 trang 122 SGK Hình học 11Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Quảng cáo
Đề bài Cho hình lập phương \(ABCD.A’B’C’D’\) cạnh \(a\). a) Chứng minh \(BC’\) vuông góc với mặt phẳng \((A’B’CD)\) b) Xác định và tính độ dài đoạn vuông góc chung của \(AB’\) và \(BC’\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết a) Chứng minh \(BC' \bot B'C;\,\,BC' \bot A'B'\). b) Xác định mặt phẳng \((AB'D')\) chứa \(AB'\) và song song \(BC'\), tìm hình chiếu của \(BC'\) trên mặt phẳng \((AB'D')\). Lời giải chi tiết a) Ta có tứ giác \(BCC'B’\) là hình vuông nên \(BC’ ⊥ B’C\) (1) Mặt khác \(A’B’ ⊥ (BCC’B’)⇒ A’B’ ⊥ BC’\) (2) Từ (1) và (2) suy ra: \(BC’⊥ (A’B’CD)\) b) Do \(AD’//BC’\) nên mặt phẳng \((AB’D’)\) là mặt phẳng chứa \(AB’\) và song song với \(BC’\). Ta tìm hình chiếu của \(BC’\) trên \(mp (AB’D’)\) Gọi \(E, F\) là tâm của các mặt bên \(ADD'A’\) và \(BCC'B’\) Từ \(F\) kẻ \(FI ⊥ B’E\). Ta có \(BC’ //AD'\) mà \(BC’ ⊥ (A’B’CD)\) \(⇒ AD’ ⊥ (A’B’CD)\) và \(IF ⊂(A’B’CD)\) \(AD’ ⊥ IF\) (3) \(EB’⊥IF\) (4) Từ (3) và (4) suy ra : \(IF ⊥ (AB’D’)\) Vậy \(I\) là hình chiếu của \(F\) trên \(mp (AB’D’)\). Qua \(I\) ta dựng đường thẳng song song với \(BC’\) thì đường thẳng này chính là hình chiếu của \(BC’\) trên mp \((AB’D’)\) Đường thẳng qua \(I\) song song với \(BC’\) cắt \(AB’\) tại \(K\). Qua \(K\) kẻ đường thẳng song song với \(IF\), đường này cắt \(BC’\) tại \(H\). \(KH\) chính là đường vuông góc chung của \(AB’\) và \(BC’\). Thật vậy: \({\rm{IF}} \bot (AB'D') \Rightarrow IF ⊥ AB'\) và \(KH // IF\) suy ra \(KH ⊥ AB'\) \(\left. \matrix{ Tam giác \(EFB’\) vuông góc tại \(F\), \(FI\) là đường cao thuộc cạnh huyền nên \(\dfrac{1}{{I{F^2}}} = \dfrac{1}{{F{B^2}}} + \dfrac{1}{{F{E^2}}}\) với \(\left\{ \matrix{FB' = {{a\sqrt 2 } \over 2} \hfill \cr {\rm{EF = a}} \hfill \cr} \right.\) Ta tính ra: \({\rm{IF}} = {{a\sqrt 3 } \over 3} \Rightarrow KH = {\rm{IF = }}{{a\sqrt 3 } \over 3}\) Loigiaihay.com
Quảng cáo
|