tuyensinh247

Câu 5.16 trang 181 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho hàm số. Giải bất phương trình

Quảng cáo

Đề bài

Cho hàm số

                         \(f\left( x \right) = \sqrt {{x^2} - 2x - 8} \)

Giải bất phương trình

                              \(f'\left( x \right) \le 1\)

 

Lời giải chi tiết

ĐKXĐ của hàm số \(f'(x)\) là \(x <  - 2\) hoặc \(x > 4.\) Vậy ta phải giải bất phương trình

            \(f'\left( x \right) = {{x - 1} \over {\sqrt {{x^2} - 2x - 8} }} \le 1\) (với \(x <  - 2\) hoặc \(x > 4\)).

\( \bullet \) Với             \(x <  - 2\) thì \(x - 1 < 0\), do đó

                                   \(f'\left( x \right) \le 1\)

luôn luôn đúng. Vậy x < - 2 thỏa mãn điều kiện bài toán.

\( \bullet \) Với x < - 2 thì x - 1 < 0, do đó

                                                \(f'\left( x \right) \le 1\)

Luôn luôn đúng. Vậy \(x <  - 2\) thỏa mãn điều kiện bài toán.

\( \bullet \) Với \(x > 4\) thì \(x - 1 > 0,\) do đó

            \(f'\left( x \right) \le 1 \Leftrightarrow x - 1 \le \sqrt {\,{x^2} - 2x - 8} \)

                           \(\, \Leftrightarrow {\left( {x - 1} \right)^2} \le {x^2} - 2x - 8 \Leftrightarrow 1 \le  - 8\)   (loại)

Vậy đáp số của bài toán là \(x <  - 2\).

Loigiaihay.com

 

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close