Câu 5.16 trang 181 sách bài tập Đại số và Giải tích 11 Nâng caoCho hàm số. Giải bất phương trình Quảng cáo
Đề bài Cho hàm số \(f\left( x \right) = \sqrt {{x^2} - 2x - 8} \) Giải bất phương trình \(f'\left( x \right) \le 1\) Lời giải chi tiết ĐKXĐ của hàm số \(f'(x)\) là \(x < - 2\) hoặc \(x > 4.\) Vậy ta phải giải bất phương trình \(f'\left( x \right) = {{x - 1} \over {\sqrt {{x^2} - 2x - 8} }} \le 1\) (với \(x < - 2\) hoặc \(x > 4\)). \( \bullet \) Với \(x < - 2\) thì \(x - 1 < 0\), do đó \(f'\left( x \right) \le 1\) luôn luôn đúng. Vậy x < - 2 thỏa mãn điều kiện bài toán. \( \bullet \) Với x < - 2 thì x - 1 < 0, do đó \(f'\left( x \right) \le 1\) Luôn luôn đúng. Vậy \(x < - 2\) thỏa mãn điều kiện bài toán. \( \bullet \) Với \(x > 4\) thì \(x - 1 > 0,\) do đó \(f'\left( x \right) \le 1 \Leftrightarrow x - 1 \le \sqrt {\,{x^2} - 2x - 8} \) \(\, \Leftrightarrow {\left( {x - 1} \right)^2} \le {x^2} - 2x - 8 \Leftrightarrow 1 \le - 8\) (loại) Vậy đáp số của bài toán là \(x < - 2\). Loigiaihay.com
Quảng cáo
|