Câu 5.13 trang 180 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho hàm số. Tìm m để

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số

                        \(f\left( x \right) = {x^3} - 2{x^2} + mx - 3\)

Tìm m để

 

LG a

 \(f'\left( x \right)\)  bằng bình phương của một nhị thức bậc nhất;

 

Lời giải chi tiết:

Với mọi \(x \in R,\) ta có

                        \(f'\left( x \right) = 3{x^2} - 4x + m\)

Để \(f'(x)\) bằng bình phương của một nhị thức bậc nhất ta phải tìm m sao cho \(f'(x)\) phải là tam thức bậc hai \(a{x^2} + bx + c\) với hệ số \(a > 0\) và có nghiệm kép, tức là

\(\left\{ \matrix{a = 3 > 0 \hfill \cr\Delta ' = 4 - 3m = 0 \hfill \cr}  \right. \Leftrightarrow m = {4 \over 3}\)

 

LG b

\(f'\left( x \right) \ge 0\) với mọi x;

 

Lời giải chi tiết:

Để \(f'\left( x \right) \ge 0\) với mọi x thì ta phải tìm m sao cho

\(\left\{ \matrix{a = 3 > 0 \hfill \cr\Delta ' = 4 - 3m \le 0 \hfill \cr}  \right. \Leftrightarrow m \ge {4 \over 3}\)

 

LG c

\(f'\left( x \right) < 0\) với mọi \(x \in \left( {0;2} \right)\)  

 

Lời giải chi tiết:

(h.5.4) Để \(f'\left( x \right) < 0\) với mọi \(x \in \left( {0;2} \right)\) thì ta phải tìm m sao cho số 0 và số 2 thuộc đoạn \(\left[ {{x_1};{x_2}} \right]\) (\({x_1}\) và \({x_2}\) là hai nghiệm của của \(f'(x)\)) tức là

\(\eqalign{& \left\{ \matrix{af'\left( 0 \right) \le 0 \hfill \cr af'\left( 2 \right) \le 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{3.m \le 0 \hfill \cr3\left( {4 + m} \right) \le 0 \hfill \cr}  \right.  \cr& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow m \le  - 4. \cr} \)

                                               

 

LG d

\(f'\left( x \right) > 0\) với mọi \(x > 0\)

 

Lời giải chi tiết:

 Để \(f'\left( x \right) > 0\) với mọi \(x > 0\) thì ta phải xét hai trường hợp sau đây

\( \bullet \) Trường hợp thứ nhất (h.5.5a)

Ta phải tìm \(m\)  sao cho tam thức bậc hai \(f'\left( x \right)\) vô nghiệm và có \(a > 0,\) tức là

\(\left\{ \matrix{a = 3 > 0 \hfill \cr\Delta ' = 4 - 3m < 0 \hfill \cr}  \right. \Leftrightarrow m > {4 \over 3}.\)

\( \bullet \) Trường hợp thứ hai (h.5.5b)

Ta phải tìm \(m\) sao cho tam thức bậc hai \(f'\left( x \right)\) có \(a > 0\) đồng thời có hai nghiệm \({x_1}\) và \({x_2}\) thỏa mãn các điều kiện \({x_1} \le {x_2} \le 0\), tức là

\(\left\{ \matrix{a = 3 > 0 \hfill \cr\Delta ' = 4 - 3m \ge 0 \hfill \cr af'\left( 0 \right) = 3m \ge 0 \hfill \cr{S \over 2} - 0 = {2 \over 3} \le 0\,\,\,\,\,\,\left( \text{ loại } \right) \hfill \cr}  \right.\)

Hệ vô nghiệm.

                                               

Chú ý. Về nguyên tắc phải xét hai trường hợp, dù trong bài này trường hợp thứ hai vô nghiệm.

Loigiaihay.com

 

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close