Câu 5 trang 50 SGK Hình học 11 Nâng cao

Cho mặt phẳng (P) và ba điểm không thẳng hàng A, B, C cùng nằm ngoài (P). Chứng minh rằng nếu ba đường thẳng AB, BC, CA đều cắt mp (P) thì các giao điểm đó thẳng hàng

Quảng cáo

Đề bài

Cho mặt phẳng (P) và ba điểm không thẳng hàng A, B, C cùng nằm ngoài (P). Chứng minh rằng nếu ba đường thẳng AB, BC, CA đều cắt mp (P) thì các giao điểm đó thẳng hàng.

Lời giải chi tiết

Gọi I, J, K lần lượt là giao điểm của AB, AC, BC với mp(P). A, B, C không thẳng hàng nên có mp(ABC).

Ta có:

I=AB(P){IAB(ABC)I(P)I(ABC)(P)(1)J=AC(P){JAC(ABC)J(P)J(ABC)(P)(2)

Từ (1) và (2)(ABC)(P)=IJ

Lại có,

K=BC(P){KBC(ABC)K(P)K(ABC)(P)=IJ

Vậy I, J, K thẳng hàng.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

close