Câu 4.89 trang 117 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.89 trang 117 SBT Đại số 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình sau :

 

LG a

 \(\dfrac{{3x - 1}}{{\sqrt 3 }} - x + 2 > 2x - 3\)

 

Lời giải chi tiết:

\(S = \left( { - \infty ;\dfrac{{5\sqrt 3  - 1}}{{3\left( {\sqrt 3  - 1} \right)}}} \right);\)

 

LG b

 \(\dfrac{{2x + 5}}{3} - 3 \le \dfrac{{3x - 7}}{4} + x + 2;\)

 

Lời giải chi tiết:

\(S = \left( {\dfrac{{ - 19}}{{13}}; + \infty } \right).\)

 

LG c

\(\left( {1 + \sqrt 3 } \right)x \le 4 + 2\sqrt 3 \)

 

Lời giải chi tiết:

Bất phương trình được đưa về dưới dạng

\(\left( {1 + \sqrt 3 } \right)x \le {\left( {1 + \sqrt 3 } \right)^2} \Leftrightarrow x \le 1 + \sqrt 3 .\)

Vậy \(S = \left( { - \infty ;1 + \sqrt 3 } \right]\)

 

LG d

\({\left( {x - \sqrt 5 } \right)^2} \ge {\left( {x + \sqrt 5 } \right)^2} - 10\)

 

Lời giải chi tiết:

Bất phương trình đã cho tương đương với

\(10 \ge {\left( {x + \sqrt 5 } \right)^2} - {\left( {x - \sqrt 5 } \right)^2} \Leftrightarrow x \le \dfrac{{\sqrt 5 }}{2}.\)

Vậy \(S = \left( { - \infty ;\dfrac{{\sqrt 5 }}{2}} \right].\)

Loigiaihay.com

 

Quảng cáo
list
close
Gửi bài