tuyensinh247

Câu 3.44 trang 92 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho cấp số cộng tăng

Quảng cáo

Đề bài

Cho cấp số cộng tăng \(({u_n})\) có \(u_1^3 + u_{15}^3 = 302094\) và tổng 15 số hạng đầu tiên bằng 585. Hãy tìm số hạng đầu tiên và công sai của cấp số cộng đó.

Lời giải chi tiết

Kí hiệu d là công sai của \({S_{15}}\) là tổng 15 số hạng đầu tiên của cấp số cộng đã cho. Vì \(({u_n})\) là cấp số cộng tăng nên \(d > 0.\)

Ta có

\(585 = {S_{15}} = {{15.({u_1} + {u_{15}})} \over 2} \)

\(\Leftrightarrow {u_1} + {u_{15}} = 78 \Leftrightarrow 2{u_1} + 14d = 78\)

                                                                                \( \Leftrightarrow {u_1} + 7d = 39\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\)

\(\eqalign{
& u_1^3 + u_{15}^3 = 302094\cr& \Leftrightarrow {\left( {{u_1} + {u_{15}}} \right)^3} - 3{u_1}{u_{15}}.\left( {{u_1} + {u_{15}}} \right) = 302094 \cr 
& \Leftrightarrow {78^3} - 3{u_1}.\left( {{u_1} + 14d} \right).78 = 302094 \cr&\Leftrightarrow {u_1}.\left( {{u_1} + 14d} \right) = 737\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \cr} \)

Từ (1) và (2) ta được hệ

\(\left\{ \matrix{
{u_1} + 7d = 39 \hfill \cr 
{u_1}.\left( {{u_1} + 14d} \right) = 737 \hfill \cr} \right.\)

Giải hệ trên, với lưu ý \(d > 0\), ta được \({u_1} = 11\) và \(d = 4\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close