tuyensinh247

Câu 23 trang 31 SGK Đại số và Giải tích 11 Nâng cao

Tìm tập xác định của mỗi hàm số sau :

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập xác định của mỗi hàm số sau:

LG a

\(y = {{1 - \cos x} \over {2\sin x + \sqrt 2 }}\)

Lời giải chi tiết:

\(y = {{1 - \cos x} \over {2\sin x + \sqrt 2 }}\) xác định  \( \Leftrightarrow 2\sin x + \sqrt 2 \ne 0\)

\( \Leftrightarrow \sin x \ne - {{\sqrt 2 } \over 2} \)

\(\Leftrightarrow \left\{ {\matrix{{x \ne - {\pi \over 4} + k2\pi } \cr {x \ne {{5\pi } \over 4} + k2\pi } \cr} } \right.\)

Vậy tập xác định của hàm số đã cho là :

\(D =\mathbb R \backslash  \left( {\left\{ { - {\pi \over 4} + k2\pi ,k \in\mathbb Z} \right\} \cup \left\{ {{{5\pi } \over 4} + k2\pi ,k \in\mathbb Z} \right\}} \right)\)

LG b

\(y = {{\sin \left( {x - 2} \right)} \over {\cos 2x - \cos x}}\)

Lời giải chi tiết:

\(y = {{\sin \left( {x - 2} \right)} \over {\cos 2x - \cos x}}\) xác định

\( \Leftrightarrow \cos 2x - \cos x \ne 0\)

\(\eqalign{& \Leftrightarrow \cos 2x \ne \cos x \cr & \Leftrightarrow \left\{ {\matrix{{2x \ne x + k2\pi } \cr {2x \ne - x + k2\pi } \cr} } \right. \cr&\Leftrightarrow \left\{ {\matrix{{x \ne k2\pi } \cr {x \ne k{{2\pi } \over 3}} \cr} } \right. \cr&\Leftrightarrow x \ne k{{2\pi } \over 3} \cr} \) 

Vậy \(D =\mathbb R \backslash  \left\{ {k{{2\pi } \over 3},k \in\mathbb Z} \right\}\)

LG c

\(y = {{\tan x} \over {1 + \tan x}}\)

Lời giải chi tiết:

\(y = {{\tan x} \over {1 + \tan x}}\) xác định

\( \Leftrightarrow \left\{ \begin{array}{l}
x \ne \frac{\pi }{2} + k\pi \\
1 + \tan x \ne 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
x \ne \frac{\pi }{2} + k\pi \\
\tan x \ne - 1
\end{array} \right.\)

\(\Leftrightarrow \left\{ {\matrix{{x \ne {\pi \over 2} + k\pi } \cr {x \ne - {\pi \over 4} + k\pi } \cr} } \right.\)

Vậy  \(D =\mathbb R \backslash  \left( {\left\{ {{\pi \over 2} + k\pi ,k \in\mathbb Z} \right\} \cup \left\{ { - {\pi \over 4} + k\pi ,k \in\mathbb Z} \right\}} \right)\)

Chú ý:

Một số em thường quên mất điều kiện để \(\tan x\) xác định, đó là \(x \ne \frac{\pi }{2} + k\pi \) dẫn đến thiếu điều kiện.

LG d

\(y = {1 \over {\sqrt 3 \cot 2x + 1}}\)

Lời giải chi tiết:

\(y = {1 \over {\sqrt 3 \cot 2x + 1}}\) xác định

\( \Leftrightarrow \left\{ \begin{array}{l}
2x \ne k\pi \\
\sqrt 3 \cot 2x + 1 \ne 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
x \ne \frac{{k\pi }}{2}\\
\cot 2x \ne - \frac{1}{{\sqrt 3 }}
\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}
x \ne \frac{{k\pi }}{2}\\
2x \ne - \frac{\pi }{3} + k\pi
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
x \ne \frac{{k\pi }}{2}\\
x \ne - \frac{\pi }{6} + \frac{{k\pi }}{2}
\end{array} \right.\)

Vậy \(D =\mathbb R \backslash  \left( {\left\{ {k{\pi \over 2},k \in\mathbb Z} \right\} \cup \left\{ { - {\pi \over 6} + k{\pi \over 2},k \in\mathbb Z} \right\}} \right)\)

Chú ý:

Một số em thường quên mất điều kiện để \(\cot 2x\) xác định, đó là \(2x \ne k\pi \) dẫn đến thiếu điều kiện.

 Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close