Câu 22 trang 30 SGK Đại số và Giải tích 11 Nâng caoTính các góc của tam giác ABC Quảng cáo
Đề bài Tính các góc của tam giác \(ABC\), biết \(AB = \sqrt 2 cm\), \(AC =\sqrt 3 cm\) và đường cao \(AH = 1cm\). (Gợi ý : Xét trường hợp \(B, C\) nằm khác phía đối với \(H\) và trường hợp \(B, C\) nằm cùng phía đối với \(H\)). Lời giải chi tiết Ta xét hai trường hợp : a/ \(B\) và \(C\) nằm khác phía đối với \(H\) Trong tam giác vuông \(ABH\) ta có : \(\sin B = {{AH} \over {AB}} = {1 \over {\sqrt 2 }}\) Suy ra \(\widehat B = 45^\circ \) (chú ý rằng góc \(B\) nhọn) Trong tam giác \(ACH\) ta có : \(\sin C = {{AH} \over {AC}} = {1 \over {\sqrt 3 }},\) suy ra \(\widehat C \approx 35^\circ 15'52\) Từ đó \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) \approx 99^\circ 44'8\) b/ \(B\) và \(C\) nằm cùng phía đối với \(H\) Tương tự như trên ta có: \(\sin \widehat {ABH} = \frac{{AH}}{{AB}} = \frac{1}{{\sqrt 2 }}\) \( \Rightarrow \widehat {ABH} = {45^0}\) \(\eqalign{ \(\sin \widehat {ACH} = \frac{{AH}}{{AC}} = \frac{1}{{\sqrt 3 }}\) \( \Rightarrow \widehat {ACH} = {35^0}15'52''\) Từ đó \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) \approx 9^\circ 44'8\) Loigiaihay.com
Quảng cáo
|