Câu 22 trang 227 SGK Đại số và Giải tích 11 Nâng cao

Cho hàm số

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(y = m{x^3} + {x^2} + x - 5.\) Tìm m để :

LG a

y’ bằng bình phương của một nhị thức bậc nhất

Lời giải chi tiết:

Ta có: \(y' = 3m{x^2} + 2x + 1\)

Ta có \(y' = 3m{x^2} + 2x + 1\) là bình phương của một nhị thức bậc nhất khi và chỉ khi

\(\left\{ {\matrix{   {3m > 0}  \cr   {\Delta ' = 1 - 3m = 0}  \cr  } } \right.\Leftrightarrow m={1\over 3}\)

LG b

y’ có hai nghiệm trái dấu

Lời giải chi tiết:

y’ có hai nghiệm trái dấu ⇔ \(3m.1 < 0 \Leftrightarrow m < 0\)

LG c

\(y’ > 0\) với mọi x.

Lời giải chi tiết:

+) Với \(m = 0;\; y’ = 2x + 1 > 0  \Leftrightarrow x >  - {1 \over 2}\) (không thỏa yêu cầu)

+) Với \(m ≠ 0\)

\(y' > 0,\forall x \in\mathbb R \Leftrightarrow \left\{ {\matrix{   {3m > 0}  \cr   {\Delta ' = 1 - 3m < 0}  \cr  } } \right. \Leftrightarrow m > {1 \over 3}\)

 Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close