Câu 22 trang 118 Sách bài tập Hình học 11 Nâng caoGiải bài tập Câu 22 trang 118 Sách bài tập Hình học 11 Nâng cao Quảng cáo
Đề bài Cho hai tam giác cân ABC và DBC có chung cạnh đáy BC và nằm trong hai mặt phẳng khác nhau. a) Chứng minh rằng AD vuông góc với CB. b) Gọi M, N là các điểm lần lượt thuộc các đường thẳng AB và DB sao cho \(\overrightarrow {MA} = k\overrightarrow {MB} ,\overrightarrow {N{\rm{D}}} = k\overrightarrow {NB} \) . Tính góc giữa hai đường thẳng MN và BC. Lời giải chi tiết
a) Gọi I là trung điểm của BC thì \(AI \bot BC,DI \bot BC\) . Ta có \(\overrightarrow {A{\rm{D}}} = \overrightarrow {AI} + \overrightarrow {I{\rm{D}}} \). Xét \(\eqalign{ & \overrightarrow {BC} .\overrightarrow {A{\rm{D}}} = \overrightarrow {BC} \left( {\overrightarrow {AI} + \overrightarrow {I{\rm{D}}} } \right) \cr & = \overrightarrow {BC} .\overrightarrow {AI} + \overrightarrow {BC} .\overrightarrow {I{\rm{D}}} = 0 \cr} \) Vậy \(BC \bot A{\rm{D}}\). b) Từ giả thiết \(\eqalign{ & \overrightarrow {MA} = k\overrightarrow {MB} \cr & \overrightarrow {N{\rm{D}}} = k\overrightarrow {NB} \cr} \) ta có MN // AD Vậy góc giữa hai đường thẳng MN và BC bằng góc giữa hai đường thẳng AD và BC. Theo câu a) thì AD vuông góc BC, nên góc giữa MN và BC bằng 90°. Loigiaihay.com
Quảng cáo
|