Câu 2 trang 192 SGK Đại số và Giải tích 11 Nâng caoDùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 LG a \(y = 2x + 1,{x_0} = 2\) Phương pháp giải: - Tính \(\Delta y=f(x_0+\Delta x)-f(x_0)\) - Tìm giới hạn \(\mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}}\) Lời giải chi tiết: \(f(x) = 2x + 1\) , cho x0 = 2 một số gia Δx Ta có: \(\eqalign{ & \Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right) \cr & = f\left( {2 + \Delta x} \right) - f\left( 2 \right) \cr & = 2\left( {2 + \Delta x} \right) + 1 - 5 = 2\Delta x \cr & \Rightarrow {{\Delta y} \over {\Delta x}} = 2 \cr &\Rightarrow f'\left( 2 \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = 2 \cr} \) LG b \(y = {x^2} + 3x,{x_0} = 1\) Lời giải chi tiết: \(f\left( x \right) = {x^2} + 3x;\) cho x0 = 1 một số gia Δx Ta có: \(\eqalign{ & \Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right) \cr & = f\left( {1 + \Delta x} \right) - f\left( 1 \right) \cr & = {\left( {1 + \Delta x} \right)^2} + 3\left( {1 + \Delta x} \right) - 4 \cr & = 5\Delta x + ({\Delta }x)^2 \cr & \Rightarrow {{\Delta y} \over {\Delta x}} = 5 + \Delta x \cr &\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} =\mathop {\lim }\limits_{\Delta x \to 0} (5 + \Delta x )= 5 \cr} \) Vậy \(f'(1) = 5\) Loigiaihay.com
Quảng cáo
|