Bài tập 38 trang 125 Tài liệu dạy – học Toán 7 tập 2

Giải bài tập Cho tam giác ABC cân tại A có AM là đường trung tuyến, D là điểm tùy ý thuộc AM. Chứng minh điểm D cách đều AB và AC.

Quảng cáo

Đề bài

Cho tam giác ABC cân tại A có AM là đường trung tuyến, D là điểm tùy ý thuộc AM. Chứng minh điểm D cách đều AB và AC.

Lời giải chi tiết

 

Kẻ \(DI \bot AB\) tại I, \(DN \bot AC\) tại N

∆ABC cân tại A có AM là đường trung tuyến (gt)

=> AM là đường phân giác của ∆ABC

=> AM là tia phân giác của góc BAC

Mà \(D \in AM(gt),DI \bot AB,DN \bot AC\) (cách vẽ)

Nên DI = DN. Vậy điểm D cách đều AB và AC.

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close