Bài 98 trang 105 SGK Toán 9 tập 2

Cho đường tròn (O) và một điểm A cố định trên đường tròn. Tìm quỹ tích các trung điểm M của dây AB khi điểm B di động trên đường tròn đó.

Quảng cáo

Đề bài

Cho đường tròn \((O)\) và một điểm \(A\) cố định trên đường tròn. Tìm quỹ tích các trung điểm \(M\) của dây \(AB\) khi điểm \(B\) di động trên đường tròn đó.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ Phần thuận: Lập luận để có \(\widehat {AMO} = 90^\circ \) suy ra quỹ tích điểm \(M\) là đường tròn đường kính \(AO.\)

+ Chứng minh phần đảo và kết luận. 

Lời giải chi tiết

 

+) Phần thuận: Giả sử \(M\) là trung điểm của dây \(AB\). Do đó, \(OM \bot AB\) hay \(\widehat {AMO} = 90^\circ \). Khi \(B\) di động trên đường tròn \((O)\) điểm \(M\) luôn nhìn đoạn \(OA\) cố định dưới một góc vuông. Vậy quỹ tích của điểm \(M\) là đường tròn tâm \(I\) đường kính \(OA\). 

+) Phần đảo: Lấy điểm \(M’\) bất kì trên đường tròn \((I)\). Nối \(M’\) với \(A\), đường thẳng \(M’A\) cắt đường tròn \((O)\) tại \(B’\). Nối \(M’\) với \(O\), ta có \(\widehat {AM'O} = {90^0}\) hay \(OM’ \bot AB’ \)

⇒ \(M\) là trung điểm của \(AB’\)

Kết luận: Tập hợp các trung điểm \(M\) của dây \(AB\) là đường tròn đường kính \(OA\).

loigiaihay.com

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close