Bài 97 trang 121 SBT Hình học 10 Nâng cao

Giải bài tập Bài 97 trang 121 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Một đường thẳng đi qua tiêu điểm \(F(c ; 0)\) của elip \((E):  \dfrac{{{x^2}}}{{{a^2}}} +  \dfrac{{{y^2}}}{{{b^2}}} = 1\)  \((a>b>0)\) và cắt nó tại hai điểm \(A, B\). Chứng minh rằng đường tròn đường kính \(AB\) không có điểm chung với đường chuẩn :\(x =  \dfrac{a}{e}\).

 

Lời giải chi tiết

(h.126).

 

Gọi \(I\) là trung điểm của \(AB; A’, B’, I’\) lần lượt là hình chiếu của \(A, B, I\) trên đường chuẩn \({d_2}:  x =  \dfrac{{{a^2}}}{c}\).

Ta sẽ chứng minh:

\(II' >  \dfrac{{AB}}{2}   \Leftrightarrow   AA' + BB' > AB\).

Ta có

\(AB = AF + BF = e.AA' + e.BB' \)

\(= e(AA' + BB') < AA' + BB' = 2II'\) (do \(e<1\)). Suy ra điều cần chứng minh.

Loigiaihay.com

 

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close