Bài 9 trang 6 SBT Hình học 12 Nâng cao

Giải bài 9 trang 6 sách bài tập Hình học 12 Nâng cao. Cho tứ diện ABCD...

Quảng cáo

Đề bài

Cho tứ diện ABCD. Chứng tỏ rằng phép dời hình biến mỗi điểm A, B, C, D thành chính nó phải là phép đồng nhất.

Lời giải chi tiết

Giả sử phép dời hình f biến mỗi điểm A, B, C, D thành chính nó, tức là \(f\left( A \right) = A\),\(f\left( B \right) = B,f\left( C \right) = C,f\left( D \right) = D.\)

Ta chứng minh rằng f biến điểm M bất kì thành M.

Thật vậy giả sử \({M'} = f\left( M \right)\) và M khác M.

Khi đó, vì phép dời hình không làm thay đổi khoảng cách giữa hai điểm nên \(AM = A{M'}\),\(BM = B{M'}\),\(CM = C{M'},DM = D{M'}\)

Suy ra bốn điểm A, B, C, D cùng nằm trên mặt phẳng trung trực của đoạn thẳng MM, điều đó trái với giả thiết ABCD là hình tứ diện.

Vậy M’ trùng với M và do đó, f là phép đồng nhất.

Loigiaihay.com

Quảng cáo

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close