Bài 9 trang 54 SGK Hình học 11

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành...

Quảng cáo

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành \(ABCD\). Trong mặt phẳng đáy vẽ đường thẳng \(d\) đi qua \(A\) và không song song với các cạnh của hình bình hành, \(d\) cắt đoạn \(BC\) tại \(E\). Gọi \(C'\) là một điểm nằm trên cạnh \(SC\)

a) Tìm giao điểm \(M\) của \(CD\) và mặt phẳng \((C'AE)\)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng \((C'AE)\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Tìm giao điểm của CD và một đường thẳng nằm trong mặt phẳng \((C'AE)\) - ktra các đường thẳng có sẵn trước như \(AE, AC', EC'\)

b) Tìm giao tuyến của mặt phẳng \((C'AE)\) với tất cả các mặt của hình chóp.

Để tìm giao tuyến của 2 mặt phẳng, ta tìm 2 điểm chung của hai mp ấy.

Lời giải chi tiết

a) Trong \((ABCD)\) gọi \(M = AE ∩ DC \Rightarrow M ∈ AE\)

\(AE ⊂ ( C'AE) \Rightarrow M ∈ ( C'AE)\).

Mà \(M ∈ CD \Rightarrow M = DC ∩ (C'AE)\)

b) Trong  \((SDC) : MC' ∩ SD = F\).

\( \Rightarrow \left\{ \begin{array}{l}
F \in MC' \subset \left( {C'AE} \right)\\
F \in SD \subset \left( {SDC} \right)
\end{array} \right. \) \(\Rightarrow F \in \left( {C'AE} \right) \cap \left( {SDC} \right)\)

Mà \(C' \in \left( {C'AE} \right) \cap \left( {SCD} \right) \) \(\Rightarrow C'F = \left( {C'AE} \right) \cap \left( {SCD} \right)\)

Ta có:\(\left\{ \begin{array}{l}\left( {C'AE} \right) \cap \left( {ABCD} \right) = AE\\\left( {C'AE} \right) \cap \left( {SAD} \right) = AF\\\left( {C'AE} \right) \cap \left( {SBC} \right) = C'E\\\left( {C'AE} \right) \cap \left( {SCD} \right) = C'F\end{array} \right. \)

\(\Rightarrow \) thiết diện của hình chóp khi cắt bởi mặt phẳng \((C'AE)\) là tứ giác \(AEC'F\).

Loigiaihay.com

  • Bài 10 trang 54 SGK Hình học 11

    Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

  • Lý thuyết hình chóp và hình tứ diện

    Hình chóp là một hình không gian gồm có một đa giác gọi là mặt đáy, các tam giác chung đỉnh gọi là mặt bên, đỉnh chung của các mặt bên đó gọi là đỉnh của hình chóp (h.2.4)

  • Bài 8 trang 54 SGK Hình học 11

    Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

  • Bài 7 trang 54 SGK Hình học 11

    Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

  • Bài 6 trang 54 SGK Hình học 11

    Cho bốn điểm A,B,C và D không đồng phẳng. Gọi M,N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP=2PD

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close