Bài 8 trang 6 SBT Hình học 10 Nâng cao

Giải bài 8 trang 6 sách bài tập hình học 10 nâng cao. Cho tam giác ABC. Gọi A’ là điểm đối xứng với B qua A, B’ là điểm đối xứng với C qua B, C’ là điểm đối xứng với A qua C. Chứng minh rằng với một điểm O bất kì, ta có:...

Quảng cáo

Đề bài

Cho tam giác \(ABC\). Gọi \(A’\) là điểm đối xứng với \(B\) qua \(A, B’\) là điểm đối xứng với \(C\) qua \(B, C’\) là điểm đối xứng với \(A\) qua \(C\). Chứng minh rằng với một điểm \(O\) bất kì, ta có:

\(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} \)\( = \overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'} \).

Lời giải chi tiết

Ta có

\(\eqalign{  & \,\,\,\,\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}   \cr  &  = \overrightarrow {OA'}  + \overrightarrow {A'A}  + \overrightarrow {OB'}  + \overrightarrow {B'B}  + \overrightarrow {OC'}  + \overrightarrow {C'C}   \cr  &  = \overrightarrow {OA'}  + \overrightarrow {AB} +\overrightarrow {OB'}  +\overrightarrow {BC} + \overrightarrow {OC'}      + \overrightarrow {CA}   \cr  &  = (\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'} ) + \left( {\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA} } \right) \cr} \)

\(= \overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'} +\overrightarrow {0}\)

\(= \overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'} \)

Loigiaihay.com

Quảng cáo
list
close
Gửi bài Hỏi bài