Bài 7 trang 6 SBT Hình học 10 Nâng caoGiải bài 7 trang 6 sách bài tập hình học 10 nâng cao. Cho hình ngũ giác đều ABCDE tâm O. Chứng minh rằng... Quảng cáo
Đề bài Cho hình ngũ giác đều \(ABCDE\) tâm \(O\). Chứng minh rằng \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} + \overrightarrow {OE} = \overrightarrow 0 \). Hãy phát biểu bài toán trong trường hợp n-giác đều. Phương pháp giải - Xem chi tiết Viết \(\overrightarrow u = \overrightarrow {OA} + (\overrightarrow {OB} + \overrightarrow {OE} ) + (\overrightarrow {OD} + \overrightarrow {OC} )\) suy ra \(\overrightarrow u \) nằm trên đường thẳng OA. Tương tự chứng minh \(\overrightarrow u \) nằm trên đường thẳng OB suy ra \(\overrightarrow u \) là véc tơ \(\overrightarrow 0\). Lời giải chi tiết
Đặt \(\overrightarrow u = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} + \overrightarrow {OE} \). Ta có thể viết: \(\overrightarrow u = \overrightarrow {OA} + (\overrightarrow {OB} + \overrightarrow {OE} ) + (\overrightarrow {OD} + \overrightarrow {OC} )\). Vì \(OA\) là phân giác của góc \(BOE\) và \(OE = OB\) nên tổng \(\overrightarrow {OB} + \overrightarrow {OE} \) là một vec tơ nằm trên đường thẳng \(OA\). Tương tự, vec tơ tổng \(\overrightarrow {OC} + \overrightarrow {OD} \) là một vec tơ cũng nằm trên đường thẳng \(OA\). Vậy \(\overrightarrow u \) là một vec tơ nằm trên đường thẳng \(OA\). Chứng minh hoàn toàn tương tự, ta có \(\overrightarrow u \) cũng là một vec tơ nằm trên đường thẳng \(OB\). Từ đó suy ra \(\overrightarrow u \) phải là vec tơ – không: \(\overrightarrow u = \overrightarrow 0 \). Bài toán trong trường hợp n-giác đều: Nếu \(A_1A_2…A_n\) là n-giác đều tâm \(O\) thì \(\overrightarrow {O{A_1}} + \overrightarrow {O{A_2}} + ... + \overrightarrow {O{A_n}} = \overrightarrow 0 \). Loigiaihay.com
Quảng cáo
|