Bài 71 trang 154 SGK Đại số 10 nâng cao

Giải các phương trình sau

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau

LG a

\(\sqrt {5{x^2} - 6x - 4}  = 2(x - 1)\)

Phương pháp giải:

Bình phương hai vế 

\(\sqrt f = g \Leftrightarrow \left\{ \begin{array}{l}
g \ge 0\\
f = {g^2}
\end{array} \right.\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \sqrt {5{x^2} - 6x - 4} = 2(x - 1)\cr& \Leftrightarrow \left\{ \matrix{
2(x-1)\ge 0 \hfill \cr 
5{x^2} - 6x - 4 = 4{(x - 1)^2} \hfill \cr} \right.\cr} \)

\(\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
x \ge 1\\
5{x^2} - 6x - 4 = 4{x^2} - 8x + 4
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ge 1\\
{x^2} + 2x - 8 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x \ge 1\\
\left[ \begin{array}{l}
x = 2\left( {TM} \right)\\
x = - 4\left( {loai} \right)
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow x = 2
\end{array}\)

Vậy S = {2}

LG b

\(\sqrt {{x^2} + 3x + 12}  = {x^2} + 3x\)

Phương pháp giải:

Đặt ẩn phụ \(t = \sqrt {{x^2} + 3x + 12} \,\,\,(t \ge 0) \)

Lời giải chi tiết:

ĐK: \({x^2} + 3x + 12 \ge 0\) luôn đúng do \(a=1>0\) và \(\Delta = 9-4.12=-39<0\).

TXĐ: D=R.

Đặt \(t = \sqrt {{x^2} + 3x + 12} \,\,\,(t \ge 0) \) \(\Rightarrow {x^2} + 3x = {t^2} - 12\) , ta có phương trình:

\(t = {t^2} - 12 \Leftrightarrow {t^2} - t - 12 = 0\) \( \Leftrightarrow \left[ \matrix{
t = 4(TM) \hfill \cr 
t = - 3 (KTM)\hfill \cr} \right.\)

\(\eqalign{
& t = 4 \Leftrightarrow \sqrt {{x^2} + 3x + 12} = 4 \cr & \Leftrightarrow {x^2} + 3x + 12 = 16\cr &\Leftrightarrow {x^2} + 3x - 4 = 0 \cr 
& \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr 
x = - 4 \hfill \cr} \right. \cr} \)

Vậy S = {-4, 1}

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close