Bài 72 trang 154 SGK Đại số 10 nâng cao

Giải các bất phương trình sau

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình sau

LG a

\(\sqrt {{x^2} + 6x + 8}  \le 2x + 3\)

Phương pháp giải:

Áp dụng:

\(\sqrt A \le B \Leftrightarrow \left\{ \matrix{
A \ge 0 \hfill \cr 
B \ge 0 \hfill \cr 
A \le {B^2} \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \sqrt {{x^2} + 6x + 8} \le 2x + 3 \cr&\Leftrightarrow \left\{ \matrix{
{x^2} + 6x + 8 \ge 0 \hfill \cr 
2x + 3 \ge 0 \hfill \cr 
{x^2} + 6x + 8 \le {(2x + 3)^2} \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \begin{array}{l}(x+2)(x+4) \ge 0\\2x + 3 \ge 0\\{x^2} + 6x + 8 \le 4{x^2} + 12x + 9\end{array} \right.\cr &\Leftrightarrow \left\{ \matrix{\left[ \matrix{x \le - 4 \hfill \cr x \ge - 2 \hfill \cr} \right. \hfill \cr x \ge - {3 \over 2} \hfill \cr 3{x^2} + 6x + 1 \ge 0 \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{x \ge - {3 \over 2} \hfill \cr \left[ \matrix{x \le {{ - 3 - \sqrt 6 } \over 3} \hfill \cr x \ge {{ - 3 + \sqrt 6 } \over 3} \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x \ge {{\sqrt 6 } \over 3} - 1 \cr} \)

Vậy \(S = {\rm{[}}{{\sqrt 6 } \over 3} - 1, + \infty )\)

LG b

\({{2x - 4} \over {\sqrt {{x^2} - 3x - 10} }} > 1\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {{2x - 4} \over {\sqrt {{x^2} - 3x - 10} }} > 1\cr& \Leftrightarrow \left\{ \matrix{
{x^2} - 3x - 10 > 0 \hfill \cr 
\sqrt {{x^2} - 3x - 10} < 2x - 4 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
{x^2} - 3x - 10 > 0 \hfill \cr 
2x - 4 > 0 \hfill \cr 
{x^2} - 3x - 10 < {(2x - 4)^2} \hfill \cr} \right. \cr& \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 3x - 10 > 0\\2x - 4 > 0\\{x^2} - 3x - 10 < 4{x^2} - 16x + 16\end{array} \right.\cr &\Leftrightarrow \left\{ \matrix{\left[ \matrix{x < - 2 \hfill \cr x > 5 \hfill \cr} \right. \hfill \cr x > 2 \hfill \cr 3{x^2} - 13x + 26 > 0\,\,(\forall x) \hfill \cr} \right. \cr &\Leftrightarrow x > 5 \cr} \)

Vậy \(S = (5, +∞)\)

LG c

\(6\sqrt {(x - 2)(x - 32)}  \le {x^2} - 34x + 48\)

Phương pháp giải:

Đặt ẩn phụ \(y = \sqrt {(x - 2)(x - 32)}\).

Lời giải chi tiết:

Đặt \(y = \sqrt {(x - 2)(x - 32)}  \) \(= \sqrt {{x^2} - 34x + 64} \,\,\,(y \ge 0)\)

\( \Rightarrow {y^2} = {x^2} - 34x + 64\)

⇒ x2 – 34x = y2 – 64

Ta có bất phương trình:

6y ≤ y2  - 64+28

⇔ y2 – 6y – 16 ≥ 0

⇔ y ≤ - 2 hoặc y ≥ 8

Với điều kiện y ≥ 0, ta được y ≥ 8

\( \Rightarrow \sqrt {{x^2} - 34x + 64}  \ge 8\)

⇔  x2 – 34x + 64 ≥ 64 ⇔  x2 – 34x ≥ 0

⇔  x ≤ 0 hoặc x ≥ 34

Vậy \(S = (-∞, 0] ∪ [34, +∞)\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close