Bài 73 trang 154 SGK Đại số 10 nâng cao

Giải các bất phương trình sau

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình sau

LG a

 \(\sqrt {{x^2} - x - 12}  \ge x - 1\)

Phương pháp giải:

Áp dụng 

\(\sqrt f \ge g \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
g < 0\\
f \ge 0
\end{array} \right.\\
\left\{ \begin{array}{l}
g \ge 0\\
f \ge {g^2}
\end{array} \right.
\end{array} \right.\)

Lời giải chi tiết:

 Ta có:

\(\eqalign{
& \sqrt {{x^2} - x - 12} \ge x - 1\cr& \Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x - 1 < 0 \hfill \cr 
{x^2} - x - 12 \ge 0 \hfill \cr} \right. \hfill \cr 
\left\{ \matrix{
x - 1 \ge 0 \hfill \cr 
{x^2} - x - 12 \ge {(x - 1)^2} \hfill \cr} \right. \hfill \cr} \right. \cr} \)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x - 1 \le 0\\
{x^2} - x - 12 \ge 0
\end{array} \right.\\
\left\{ \begin{array}{l}
x - 1 \ge 0\\
{x^2} - x - 12 \ge {x^2} - 2x + 1
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x \le 1\\
\left[ \begin{array}{l}
x \ge 4\\
x \le - 3
\end{array} \right.
\end{array} \right.\\
\left\{ \begin{array}{l}
x \ge 1\\
x \ge 13
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x \le - 3\\
x \ge 13
\end{array} \right.
\end{array}\)

Vậy \(S = (-∞, -3] ∪ [13, +∞)\)

LG b

\(\sqrt {{x^2} - 4x - 12}  > 2x + 3\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \sqrt {{x^2} - 4x - 12} > 2x + 3 \cr&\Leftrightarrow \left[ \matrix{
\left\{ \matrix{
2x + 3 < 0 \hfill \cr 
{x^2} - 4x - 12 \ge 0 \hfill \cr} \right. \hfill \cr 
\left\{ \matrix{
2x + 3 \ge 0 \hfill \cr 
{x^2} - 4x - 12 > {(2x + 3)^2} \hfill \cr} \right. \hfill \cr} \right. \cr} \)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x < - \frac{3}{2}\\
\left[ \begin{array}{l}
x \le - 2\\
x \ge 6
\end{array} \right.
\end{array} \right.\\
\left\{ \begin{array}{l}
x \ge - \frac{3}{2}\\
{x^2} - 4x - 12 > 4{x^2} + 12x + 9
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x \le - 2\\
\left\{ \begin{array}{l}
x \ge - \frac{3}{2}\\
- 3{x^2} - 16x - 21 > 0
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x \le - 2\\
\left\{ \begin{array}{l}
x \ge - \frac{3}{2}\\
- 3 < x < - \frac{7}{3}
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x \le - 2\\
- \frac{3}{2} \le x < - \frac{7}{3}
\end{array} \right.\\
\Leftrightarrow x \le - 2
\end{array}\)

Vậy \(S = (-∞, -2]\)

LG c

\({{\sqrt {x + 5} } \over {1 - x}} < 1\)

Phương pháp giải:

Xét các trường hợp \(1-x < 0\) và \(1-x > 0\)

Lời giải chi tiết:

Bất phương trình đã cho tương đương với:

\((I)\,\left\{ \matrix{
1 - x > 0 \hfill \cr 
\sqrt {x + 5} < 1 - x \hfill \cr} \right.\\(II)\left\{ \matrix{
1 - x < 0 \hfill \cr 
\sqrt {x + 5} > 1 - x \hfill \cr} \right.\)

\(\eqalign{
& (I) \Leftrightarrow \left\{ \matrix{
x < 1 \hfill \cr 
x + 5 \ge 0 \hfill \cr 
x + 5 < {(1 - x)^2} \hfill \cr } \right. \cr &\Leftrightarrow \left\{ \matrix{
x < 1 \hfill \cr 
x \ge - 5 \hfill \cr 
x+5 < x^2-2x+1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left\{ \matrix{
x < 1 \hfill \cr 
x \ge - 5 \hfill \cr 
{x^2} - 3x - 4 > 0 \hfill \cr} \right. \cr &\Leftrightarrow \left\{ \matrix{
- 5 \le x < 1 \hfill \cr 
\left[ \matrix{
x < - 1 \hfill \cr 
x > 4 \hfill \cr} \right. \hfill \cr} \right. \cr&\Leftrightarrow - 5 \le x < - 1 \cr} \)

\(\left( {II} \right) \Leftrightarrow \left\{ \begin{array}{l}
x > 1\\
x + 5 \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x > 1\\
x \ge - 5
\end{array} \right.\) \(\Leftrightarrow x > 1\)

Vậy \(S = [-5, -1) ∪ (1, +∞)\)

Loigiaihay.com

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...
close