Bài 7 trang 26 SGK Toán 11 tập 2 – Cánh DiềuMột hộp chứa 9 quả cầu có cùng kích thước và khối lượng, trong đó có 4 quả cầu màu xanh đánh số từ 1 đến 4, có 3 quả cầu màu vàng đánh số từ 1 đến 3 Quảng cáo
Đề bài Một hộp chứa 9 quả cầu có cùng kích thước và khối lượng, trong đó có 4 quả cầu màu xanh đánh số từ 1 đến 4, có 3 quả cầu màu vàng đánh số từ 1 đến 3, có 2 quả cầu màu đỏ đánh số 1 và 2. Lấy ngẫu nhiên 2 quả cầu từ hộp. Tính xác suất để 2 quả cầu được lấy vừa khác nhau vừa khác số. Phương pháp giải - Xem chi tiết - Sử dụng các quy tắc đếm để tìm phần tử của không gian mẫu và biến cố - Áp dụng biến cố đối để tính xác suất Lời giải chi tiết - Số cách lấy ngẫu nhiên 2 quả cầu: \(n\left( \Omega \right) = C_9^2 = 36\) - Số cách lấy 2 quả khác màu là: + 1 quả màu xanh và 1 quả màu vàng: \(C_4^1 \times C_3^1 = 12\) + 1 quả màu xanh và 1 quả màu đỏ: \(C_4^1 \times C_2^1 = 8\) + 1 quả màu đỏ và 1 quả màu vàng: \(C_2^1 \times C_3^1 = 6\) => Tổng số cách lấy ra 2 quả khác màu là: 26 cách - Số cách lấy 2 quả khác màu trùng số: + 2 quả cùng là số 1: \(C_3^2 = 3\) + 2 quả cùng là số 2: \(C_3^2 = 3\) + 2 quả cùng là số 3: \(C_2^2 = 1\) => Tổng số cách lấy ra 2 quả khác màu trùng số là: 7 cách => Số cách lấy ra 2 quả khác màu khác số là: 26 – 7 = 19 (cách) => Xác suất để lấy ra 2 quả khác màu khác số là: \(P = \frac{{19}}{{36}}\)
Quảng cáo
|