Bài 7 trang 120 SGK Toán 11 tập 1 - Cánh Diều

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD) và AB = 2CD. Gọi M, N lần lượt là trung điểm của các cạnh SA, SB. Chứng minh rằng:

Quảng cáo

Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD)AB = 2CD. Gọi M, N lần lượt là trung điểm của các cạnh SA, SB. Chứng minh rằng:

a) MN // (SCD);

b) DM // (SBC);

c) Lấy điểm I thuộc cạnh SD sao cho\(\frac{{SI}}{{SD}} = \frac{2}{3}\).Chứng minh rằng: SB // (AIC).

Phương pháp giải - Xem chi tiết

Đường thẳng d song song với mặt phẳng (P) nếu d song song với 1 đường thẳng d' nằm trong (P).

Lời giải chi tiết

a) Trong mp(SAB), xét DSAB có M, N lần lượt là trung điểm của SA, SB nên MN là đường trung bình của tam giác

Do đó MN // AB.

Mà AB // CD (giả thiết) nên MN // CD.

Lại có CD ⊂ (SCD) nên MN // (SCD).

b) Theo câu a, MN là đường trung bình của ΔSAB nên MN = ½AB

Mà AB = 2CD hay CD = ½ AB

Do đó MN = CD.

Xét tứ giác MNCD có: MN // CD và MN = CD nên MNCD là hình bình hành

Suy ra DM // CN

Mà CN ⊂ (SBC) nên DM // (SBC)

c) Trong mp(ABCD), gọi O là giao điểm của AC và BD.

Do AB // CD, theo hệ quả định lí Thalès ta có: \(\frac{{OB}}{{DO}} = \frac{{AB}}{{CD}} = \frac{2}{1}\)

Suy ra\(\frac{{OB}}{{DO + OB}} = \frac{2}{{1 + 2}} = \frac{2}{3}\) hay \(OB\frac{{OB}}{{DO}} = \frac{2}{3}\)

• Trong mp(SDB), xét Δ∆SDB có \(\frac{{SI}}{{SD}} = \frac{{OB}}{{DB}} = \frac{2}{3}\) nên IO // SB (theo định lí Thalès đảo)

Mà IO ⊂ (AIC) nên SB // (AIC).

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close