Bài 6 trang 85 SGK Toán 11 tập 1 - Chân trời sáng tạoLực hấp dẫn do Trái Đất tác dụng lên một đơn vị khối lượng ở khoảng cách \(r\) ở tỉnh từ tâm của nó là Quảng cáo
Đề bài Lực hấp dẫn do Trái Đất tác dụng lên một đơn vị khối lượng ở khoảng cách \(r\) ở tỉnh từ tâm của nó là \(F\left( r \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{GM{\rm{r}}}}{{{R^3}}}}&{khi\,\,0 < x < R}\\{\frac{{GM}}{{{r^2}}}}&{khi\,\,r \ge R}\end{array}} \right.\) trong đó \(M\) là khối lượng, \(R\) là bán kính của Trái Đất, \(G\) là hằng số hấp dẫn. Hàm số \(F\left( r \right)\) có liên tục trên \(\left( {0; + \infty } \right)\) không? Phương pháp giải - Xem chi tiết Bước 1: Tìm tập xác định của hàm số. Bước 2: Xét tính liên tục của hàm số trên từng khoảng xác định. Bước 3: Xét tính liên tục của hàm số tại điểm \({r_0} = R\). Bước 4: Kết luận. Lời giải chi tiết Hàm số \(F\left( r \right)\) có tập xác định là \(\left( {0; + \infty } \right)\). Hàm số \(F\left( r \right)\) xác định trên từng khoảng \(\left( {0;R} \right)\) và \(\left( {R; + \infty } \right)\) nên hàm số liên tục trên các khoảng đó. Ta có: \(F\left( R \right) = \frac{{GM}}{{{R^2}}}\) \(\begin{array}{l}\mathop {\lim }\limits_{r \to {R^ + }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ + }} \frac{{GM}}{{{r^2}}} = \frac{{GM}}{{{R^2}}}\\\mathop {\lim }\limits_{r \to {R^ - }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ - }} \frac{{GMr}}{{{R^3}}} = \frac{{GMR}}{{{R^3}}} = \frac{{GM}}{{{R^2}}}\end{array}\) Vì \(\mathop {\lim }\limits_{r \to {R^ + }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ - }} F\left( r \right) = \frac{{GM}}{R}\) nên \(\mathop {\lim }\limits_{r \to R} F\left( r \right) = \frac{{GM}}{R} = F\left( R \right)\). Vậy hàm số \(F\left( r \right)\) liên tục tại điểm \({r_0} = R\). Vậy hàm số \(F\left( r \right)\) liên tục trên \(\left( {0; + \infty } \right)\).
Quảng cáo
|