Bài 5 trang 53 SGK Hình học 11

Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

Quảng cáo

Đề bài

Cho tứ giác \(ABCD\) nằm trong mặt phẳng \((α)\) có hai cạnh \(AB\) và \(CD\) không song song. Gọi \(S\) là điểm nằm ngoài mặt phẳng \((α)\) và \(M\) là trung điểm đoạn \(SC\).

a) Tìm giao điểm \(N\) của đường thẳng \(SD\) và mặt phẳng \((MAB)\).

b) Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Chứng minh rằng ba đường thẳng \(SO, AM, BN\) đồng quy.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Tìm một đường thẳng trong \((MAB)\) cắt được \(SD\). Khi đó giao điểm đó chính là giao điểm của \(SD\) và \((MAB)\).

b) Chứng minh \(\left( {SAC} \right) \cap \left( {SBD} \right) = SO\). Gọi \(I = AM \cap BN\), chứng minh \(I\) là điểm chung của hai mặt phẳng \((SAC)\) và \((SBD) \, \Rightarrow I \in SO\).

Lời giải chi tiết

a) Trong mặt phẳng \((α)\) vì \(AB\) và \(CD\) không song song nên \(AB ∩ DC = E\)

\( \Rightarrow E ∈ DC\), mà \(DC ⊂ (SDC)\)

\( \Rightarrow E ∈ ( SDC)\).

Trong \((SDC)\) đường thẳng \(ME\) cắt \(SD\) tại \(N\)

\( \Rightarrow N ∈ ME\) mà \(ME ⊂ (MAB)\)

\( \Rightarrow N ∈ ( MAB)\). Lại có \(N ∈ SD \Rightarrow N = SD ∩ (MAB)\)

b) \(O\) là giao điểm của \(AC\) và \(BD\)\( \Rightarrow O\) thuộc \(AC\) và \(BD\), mà \(AC ⊂ ( SAC), BD ⊂ (SBD) \)

\( \Rightarrow O ∈( SAC), O ∈ (SBD)\)

\(\Rightarrow\)  \(O\) là một điểm chung của \((SAC)\) và \((SBD)\)

Mặt khác \(S\) cũng là điểm chung của \((SAC)\) và \((SBD)\)

\(\Rightarrow  (SAC) ∩ (SBD) = SO\)

Trong mặt phẳng \((AEN)\) gọi \(I = AM ∩ BN \Rightarrow I \in AM; I \in BN\)

Mà \(AM ⊂ (SAC) \Rightarrow  I ∈ (SAC) \)

\(BN ⊂ ( SBD) \)\(\Rightarrow  I ∈ (SBD)\).

Như vậy \(I\) là điểm chung của \((SAC)\) và \((SBD)\) nên \(I \in SO\) là giao tuyến của \((SAC)\) và \((SBD)\).

Vậy \(S, I, O\) thẳng hàng hay \(SO, AM, BN\) đồng quy tại \(I\).

Cách khác:

b) Chứng minh \(SO, MA, BN\) đồng quy:

+ Trong mặt phẳng \((SAC) : SO\) và \(AM\) cắt nhau.

+ Trong mp \((MAB) : MA\) và \(BN\) cắt nhau

+ Trong mp \((SBD) : SO\) và \(BN\) cắt nhau.

+ Qua \(AM\) và \(BN\) xác định được duy nhất \((MAB)\), mà \(SO\) không nằm trong mặt phẳng \((MAB)\) nên \(AM; BN; SO\) không đồng phẳng.

Theo kết quả bài tập 3 ta có \(SO, MA, BN\) đồng quy.

Loigiaihay.com

  • Bài 6 trang 54 SGK Hình học 11

    Cho bốn điểm A,B,C và D không đồng phẳng. Gọi M,N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP=2PD

  • Bài 7 trang 54 SGK Hình học 11

    Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

  • Bài 8 trang 54 SGK Hình học 11

    Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

  • Bài 9 trang 54 SGK Hình học 11

    Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành...

  • Bài 10 trang 54 SGK Hình học 11

    Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close