Bài 46 trang 45 SBT Hình học 10 Nâng caoGiải bài tập Bài 46 trang 45 SBT Hình học 10 Nâng cao Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Cho các vec tơ \(\overrightarrow a ( - 2 ; 3) ; \overrightarrow b (4 ; 1)\). LG a Tính côsin của góc giữa mỗi cặp vec tơ sau: \(\overrightarrow a \) và \(\overrightarrow b; \) \(\overrightarrow a \) và \(\overrightarrow i; \) \(\overrightarrow b \) và \(\overrightarrow j ;\) \(\overrightarrow a + \overrightarrow b \) và \(\overrightarrow a - \overrightarrow b \) Lời giải chi tiết: Ta có \(\begin{array}{l}\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \dfrac{{ - 2.4 + 3.1}}{{\sqrt {{2^2} + {3^3}} .\sqrt {{4^2} + {1^2}} }}\\ = - \dfrac{5}{{\sqrt {221} }} ;\\\cos \left( {\overrightarrow a ,\overrightarrow i } \right) = - \dfrac{2}{{\sqrt {13} }} ; \\\cos \left( {\overrightarrow b ,\overrightarrow j } \right) = \dfrac{1}{{\sqrt {17} }} ;\\\overrightarrow a + \overrightarrow b = (2 ; 4) ; \overrightarrow a - \overrightarrow b = ( - 6 ; 2) ;\\\cos \left( {\overrightarrow a + \overrightarrow b , \overrightarrow a - \overrightarrow b } \right) \\= \dfrac{{ - 4}}{{\sqrt {{2^2} + {4^2}} .\sqrt {{6^2} + {2^2}} }} = - \dfrac{1}{{5\sqrt 2 }}.\end{array}\) LG b Tìm các số \(k\) và \(l\) sao cho vec tơ \(\overrightarrow c = k\overrightarrow a + l\overrightarrow b \) vuông góc với vec tơ \(\overrightarrow a + \overrightarrow b \). Lời giải chi tiết: Ta có \(\begin{array}{l}\overrightarrow c = k\overrightarrow a + l\overrightarrow b = ( - 2k + 4l ; 3k + l) ;\\\overrightarrow c \bot \left( {\overrightarrow a + \overrightarrow b } \right) \Leftrightarrow \overrightarrow c .\left( {\overrightarrow a + \overrightarrow b } \right) = 0 \\ \Leftrightarrow 2( - 2k + 4l) + 4(3k + l) = 0\\ \Leftrightarrow 2k + 3l = 0.\end{array}\) Vậy với \(2k+3l=0\) thì \(\overrightarrow c \bot \left( {\overrightarrow a + \overrightarrow b } \right).\) LG c Tìm vec tơ \(\overrightarrow d \) biết \(\overrightarrow a . \overrightarrow d = 4\) và \(\overrightarrow b . \overrightarrow d = - 2\). Lời giải chi tiết: Giả sử \(\overrightarrow d = (x ; y)\). Khi đó từ \(\overrightarrow a .\overrightarrow d = 4 ; \overrightarrow b .\overrightarrow d = - 2\), suy ra hệ phương trình \(\left\{ \begin{array}{l} - 2x + 3y = 4\\4x + y = - 2\end{array} \right.\) Từ đó giải hệ ta có \(\overrightarrow d = \left( { - \dfrac{5}{7} ; \dfrac{6}{7}} \right)\). Loigiaihay.com
Quảng cáo
|