tuyensinh247

Bài 46 trang 45 SBT Hình học 10 Nâng cao

Giải bài tập Bài 46 trang 45 SBT Hình học 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Cho các vec tơ \(\overrightarrow a ( - 2 ; 3) ;  \overrightarrow b (4 ; 1)\).

LG a

Tính côsin của góc giữa mỗi cặp vec tơ sau:

\(\overrightarrow a \) và \(\overrightarrow b; \) \(\overrightarrow a \) và \(\overrightarrow i; \) \(\overrightarrow b \) và \(\overrightarrow j ;\) \(\overrightarrow a  + \overrightarrow b \) và \(\overrightarrow a  - \overrightarrow b \)

Lời giải chi tiết:

Ta có

\(\begin{array}{l}\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \dfrac{{ - 2.4 + 3.1}}{{\sqrt {{2^2} + {3^3}} .\sqrt {{4^2} + {1^2}} }}\\ =  - \dfrac{5}{{\sqrt {221} }}  ;\\\cos \left( {\overrightarrow a ,\overrightarrow i } \right) =  - \dfrac{2}{{\sqrt {13} }}  ; \\\cos \left( {\overrightarrow b ,\overrightarrow j } \right) = \dfrac{1}{{\sqrt {17} }}  ;\\\overrightarrow a  + \overrightarrow b  = (2 ; 4)  ;   \overrightarrow a  - \overrightarrow b  = ( - 6 ; 2)  ;\\\cos \left( {\overrightarrow a  + \overrightarrow b  ,  \overrightarrow a  - \overrightarrow b } \right) \\= \dfrac{{ - 4}}{{\sqrt {{2^2} + {4^2}} .\sqrt {{6^2} + {2^2}} }} =  - \dfrac{1}{{5\sqrt 2  }}.\end{array}\)

LG b

Tìm các số \(k\) và \(l\) sao cho vec tơ \(\overrightarrow c  = k\overrightarrow a  + l\overrightarrow b \) vuông góc với vec tơ \(\overrightarrow a  + \overrightarrow b \).

Lời giải chi tiết:

Ta có

\(\begin{array}{l}\overrightarrow c  = k\overrightarrow a  + l\overrightarrow b  = ( - 2k + 4l ; 3k + l) ;\\\overrightarrow c   \bot \left( {\overrightarrow a  + \overrightarrow b } \right)     \Leftrightarrow   \overrightarrow c .\left( {\overrightarrow a  + \overrightarrow b } \right) = 0 \\   \Leftrightarrow    2( - 2k + 4l) + 4(3k + l) = 0\\                          \Leftrightarrow 2k + 3l = 0.\end{array}\)

Vậy với \(2k+3l=0\) thì  \(\overrightarrow c    \bot \left( {\overrightarrow a  + \overrightarrow b } \right).\)

LG c

Tìm vec tơ \(\overrightarrow d \) biết \(\overrightarrow a . \overrightarrow d  = 4\) và \(\overrightarrow b . \overrightarrow d  =  - 2\).

Lời giải chi tiết:

Giả sử \(\overrightarrow d  = (x ; y)\). Khi đó từ \(\overrightarrow a .\overrightarrow d  = 4  ;  \overrightarrow b .\overrightarrow d  =  - 2\), suy ra hệ phương trình

\(\left\{ \begin{array}{l} - 2x + 3y = 4\\4x + y =  - 2\end{array} \right.\)

Từ đó giải hệ ta có  \(\overrightarrow d  = \left( { - \dfrac{5}{7} ; \dfrac{6}{7}} \right)\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close