Bài 42 trang 27 SGK Toán 9 tập 2

Giải bài 42 trang 27 SGK Toán 9 tập 2. Giải hệ phương trình trong mỗi trường hợp sau:

Đề bài

Giải hệ phương trình\(\left\{ \matrix{2{\rm{x}} - y = m \hfill \cr 4{\rm{x}} - {m^2}y = 2\sqrt 2 \hfill \cr} \right.\) trong mỗi trường hợp sau:

a) \(m = -\sqrt{2}\)       b) \(m = \sqrt{2}\)        c) \(m = 1\)

Phương pháp giải - Xem chi tiết

Cách 1: Giải hệ phương trình đã cho bằng phương pháp thế hoặc cộng đại số để tìm được \(x, y\) theo \(m.\) Sau đó thay từng giá trị m vào ta tìm được nghiệm cụ thể.

Cách 2: Thay từng giá trị \(m\) vào hệ phương trình rồi dùng phương pháp thế hoặc cộng đại số để giải hệ phương trình thu được.

Lời giải chi tiết

(I) \(\left\{ \matrix{2{\rm{x}} - y = m(1) \hfill \cr 4{\rm{x}} - {m^2}y = 2\sqrt 2 (2) \hfill \cr} \right.\)

Ta có (1) ⇔ \(y = 2x – m\) (3)

Thế (3) vào (2), ta có:

\(4{\rm{x}} - {m^2}\left( {2{\rm{x}} - m} \right) = 2\sqrt 2\)

\( \Leftrightarrow 2\left( {2 - {m^2}} \right)x = 2\sqrt 2  - {m^3}(*)\) 

a) Với \(m = - \sqrt{2}\). Thế vào phương trình (*), ta được:

\(2(2 – 2)x = 2\sqrt{2} + 2\sqrt{2} ⇔ 0x = 4\sqrt{2}\)

Vậy hệ phương trình đã cho vô nghiệm.

b) Với \(m = \sqrt{2}\). Thế vào phương trình (*), ta được:

\(2(2 – 2)x = 2\sqrt{2} - 2\sqrt{2} ⇔ 0x = 0\)

Vậy hệ trình này có vô số nghiệm.

c) Với \(m = 1\). Thế vào phương trình (*), ta được:

\(2.(2-1)x = 2\sqrt 2  - 1 \Leftrightarrow 2{\rm{x}} = 2\sqrt 2  - 1\)

\(\Leftrightarrow x = \displaystyle {{2\sqrt 2  - 1} \over 2}\) 

Thay \(x\) vừa tìm được vào (3), ta có: \(y = 2\sqrt{2} – 2\)

Vậy hệ phương trình có một nghiệm duy nhất là: \(\left( \displaystyle {{{2\sqrt 2  - 1} \over 2};2\sqrt 2  - 2} \right)\)

loigiaihay.com

?>
Gửi bài tập - Có ngay lời giải