Bài 4 trang 79 SGK Đại số 10

Giải bài 4 trang 79 SGK Đại số 10. Chứng minh rằng:...

Quảng cáo

➡ Góp ý Loigiaihay.com, nhận quà liền tay! Góp ý ngay!💘

Đề bài

 Chứng minh rằng: 

\({x^3} + {\rm{ }}{y^3} \ge {\rm{ }}{x^2}y{\rm{ }} + {\rm{ }}x{y^2}\), \(∀x ≥ 0, ∀y ≥ 0\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng từ bất đẳng thức \((x - y)^2\ge 0\)

Lời giải chi tiết

Ta có: \((x - y)^2\ge 0\Leftrightarrow {x^2} + {\rm{ }}{y^2}-{\rm{ }}2xy{\rm{ }} \ge {\rm{ }}0\)

\(\Leftrightarrow {x^2} + {\rm{ }}{y^2}-{\rm{ }}xy{\rm{ }} \ge xy\)

Do \(x ≥ 0, y ≥ 0\) \(\Rightarrow x + y ≥ 0\)

Ta có

\(\left( {x{\rm{ }} + {\rm{ }}y} \right)({x^2} + {\rm{ }}{y^2}-{\rm{ }}xy){\rm{ }} \ge \left( {x{\rm{ }} + {\rm{ }}y} \right)xy\)

\(\Leftrightarrow {x^3} + {\rm{ }}{y^3} \ge {\rm{ }}{x^2}y{\rm{ }} + {\rm{ }}x{y^2}\)

Loigiaihay.com

Quảng cáo

Xem thêm tại đây: Bài 1. Bất đẳng thức
Gửi bài tập - Có ngay lời giải