Bài 4 trang 39 SBT Hình học 10 Nâng cao

Giải bài tập Bài 4 trang 39 SBT Hình học 10 Nâng cao

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng minh rằng với mọi góc a khác \(90^0\), ta có \(1 + {\tan ^2}a = \dfrac{1}{{{{\cos }^2}a}}.\)

Lời giải chi tiết:

\(1 + {\tan ^2}a = 1 + \dfrac{{{{\sin }^2}a}}{{{{\cos }^2}a}} \)

\(= \dfrac{{{{\cos }^2}a + {{\sin }^2}a}}{{{{\cos }^2}a}} = \dfrac{1}{{{{\cos }^2}a}}.\)

LG b

Cho \(\tan x=-5\), hãy tìm các giá trị lượng giác còn lại của góc \(x\).

Lời giải chi tiết:

Áp dụng \(\tan x.\cot x = 1\) ta tính được \(\cot x =- \dfrac{1}{5}\).

Áp dụng câu a), ta có \(\dfrac{1}{{{{\cos }^2}x}} = 1 + {( - 5)^2}\)

\(\Rightarrow \,\,{\cos ^2}x = \dfrac{1}{{26}}.\)

Vì \(\tan x <0\) nên \(\cos x<0,\) suy ra \(\cos x =  - \dfrac{1}{{\sqrt {26} }}\).

Từ \(\sin x=\cos x.\tan x\), ta tính được:

\(\cot x =  - \dfrac{1}{5}\,;\,\,\sin x = \dfrac{5}{{\sqrt {26} }}\).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close