Tết sale hết! Đồng giá 399K, 499K toàn bộ khoá học tại Tuyensinh247

Duy nhất từ 08-10/01

NHẬN ƯU ĐÃI
Xem chi tiết

Bài 37 trang 109 SGK Toán 11 tập 2 - Kết nối tri thức

Hai bạn Dũng và Cường tham gia một kì thi học sinh giỏi môn Toán. Xác suất để Dũng và Cường đạt giải tương ứng là 0,85 và 0,9 .

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Quảng cáo

Đề bài

Hai bạn Dũng và Cường tham gia một kì thi học sinh giỏi môn Toán. Xác suất để Dũng và Cường đạt giải tương ứng là 0,85 và 0,9 . Tính xác suất để:

a) Có ít nhất một trong hai bạn đạt giải;

b) Có đúng một bạn đạt giải.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Nếu hai biến cố A và B độc lập với nhau thì P(AB) = P(A).P(B).

Lời giải chi tiết

a) Gọi A và B tương ứng là biến cố: “Bạn Dũng đạt giải” và “Bạn Cường đạt giải”. Từ điều kiện bài toán, A và B là hai biến cố độc lập. Theo công thức nhân, ta có:

P(AB) = P(A).P(B) = 0,85.0,9 = 0,765.

P(¯AB)=P(¯A).P(¯B)=(10,85).(10,9)=0,15.0,1=0,015

Theo công thức cộng ta có

 P(AB)=P(A)+P(B)P(AB)=0,85+0,90,765=0,985

b) Do (A,¯B) độc lập và (¯A,B) độc lập nên theo công thức nhân ta có:

P(A¯B)=P(A)P(¯B)=0,85.(10,9)=0,85.0,1=0,085P(¯AB)=P(¯A)P(B)=(10,85).0,9=0,15.0,9=0,135

Gọi E là biến cố: “Có đúng một trong hai bạn đạt giải”. Ta có E=A¯B¯AB

Theo công thức cộng hai biến cố xung khắc, ta có:

P(E)=P(A¯B¯AB)=P(A¯B)+P(¯AB)=0,085+0,135=0,22.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

close