Bài 34 trang 56 SGK Toán 9 tập 2Giải các phương trình trùng phương: Quảng cáo
Video hướng dẫn giải Giải các phương trình trùng phương: LG a \({x^4}-{\rm{ }}5{x^2} + {\rm{ }}4{\rm{ }} = {\rm{ }}0\) Phương pháp giải: Phương pháp giải phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\left( {a \ne 0} \right)\) Đặt \({x^2} = t\left( {t \ge 0} \right)\) khi đó phương trình đã cho trở thành \(a{t^2} + bt + c = 0\) giải phương trình bậc 2 ẩn t sau đó đối chiếu với điều kiện \(t \ge 0\) rồi tìm \(x\) Lời giải chi tiết: \({x^4}-{\rm{ }}5{x^2} + {\rm{ }}4{\rm{ }} = {\rm{ }}0\) Đặt \({x^2} = {\rm{ }}t{\rm{ }}(t \ge {\rm{ }}0\)), phương trình trở thành: \({t^2}-{\rm{ }}5t{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}0; a + b + c = 1 + (-5) + 4 = 0 , \) nên phương trình có 2 nghiệm: \({\rm{ }}{t_1} = {\rm{ }}1,{\rm{ }}{t_2} = {\rm{ }}4\) (thỏa mãn) Với t = 1 ta có: \({x^2} = 1 \Leftrightarrow x = \pm 1\) Với t = 4 ta có: \({x^2} = 4 \Leftrightarrow x = \pm 2\) Vậy phương trình đã cho có 4 nghiệm phân biệt \(x=\pm 1;x=\pm2\) LG b \(2{x^4}-{\rm{ }}3{x^2}-{\rm{ }}2{\rm{ }} = {\rm{ }}0\) Phương pháp giải: Phương pháp giải phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\left( {a \ne 0} \right)\) Đặt \({x^2} = t\left( {t \ge 0} \right)\) khi đó phương trình đã cho trở thành \(a{t^2} + bt + c = 0\) giải phương trình bậc 2 ẩn t sau đó đối chiếu với điều kiện \(t \ge 0\) rồi tìm \(x\) Lời giải chi tiết: \(2{x^4}-{\rm{ }}3{x^2}-{\rm{ }}2{\rm{ }} = {\rm{ }}0\). Đặt \({x^2} = {\rm{ }}t{\rm{ }} (t \ge {\rm{ }}0\)), phương trình trở thành: \(2{t^2}{\rm{ - }}3t{\rm{ - }}2 = 0\) (2) \(\Delta = {\left( { - 3} \right)^2} - 4.2.\left( { - 2} \right) = 25 > 0 \Rightarrow \sqrt \Delta = 5\) Khi đó phương trình (2) có 2 nghiệm phân biệt là: \({t_1} = \dfrac{{ - \left( { - 3} \right) - 5}}{{2.2}} = \dfrac{{ - 1}}{2}\) (loại vì không thỏa mãn điều kiện); \({t_2} = \dfrac{{ - \left( { - 3} \right) + 5}}{{2.2}} = 2\left( {tm} \right)\) Với \(t = 2 \Leftrightarrow {x^2} = 2 \Leftrightarrow x = \pm \sqrt 2 \) Vậy phương trình đã cho có 2 nghiệm phân biệt \(x = \pm \sqrt 2 \) LG c \(3{x^4} + {\rm{ }}10{x^2} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\) Phương pháp giải: Phương pháp giải phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\left( {a \ne 0} \right)\) Đặt \({x^2} = t\left( {t \ge 0} \right)\) khi đó phương trình đã cho trở thành \(a{t^2} + bt + c = 0\) giải phương trình bậc 2 ẩn t sau đó đối chiếu với điều kiện \(t \ge 0\) rồi tìm \(x\) Lời giải chi tiết: \(3{x^4} + {\rm{ }}10{x^2} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\) Đặt \({x^2} = {\rm{ }}t{\rm{ }} (t \ge {\rm{ }}0\)), phương trình trở thành: \(3{t^2} + 10t + 3 = 0\) (3) \(\Delta ' = {5^2} - 3.3 = 16 > 0 \Rightarrow \sqrt {\Delta '} = 4\) Khi đó phương trình (3) sẽ có 2 nghiệm phân biệt là: \(t{ _1} = \dfrac{{ - 5 - 4}}{3} = - 3\) (loại vì không thỏa mãn điều kiện) \(t{_2} = \dfrac{{ - 5 +4}}{3} = - \dfrac{1}{3}\) (loại vì không thỏa mãn điều kiện) Vậy phương trình đã cho vô nghiệm.
Quảng cáo
|