Bài 3 trang 77 SGK Toán 11 tập 1 - Cánh Diều

Bạn Nam cho rằng: “Nếu hàm số (y = fleft( x right)) liên tục tại điểm ({x_0},) còn hàm số (y = gleft( x right)) không liên tục tại ({x_0},) thì hàm số (y = fleft( x right) + gleft( x right)) không liên tục tại ({x_0})”. Theo em, ý kiến của bạn Nam đúng hay sai? Giải thích.

Quảng cáo

Đề bài

Bạn Nam cho rằng: “Nếu hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0},\) còn hàm số \(y = g\left( x \right)\) không liên tục tại \({x_0},\) thì hàm số \(y = f\left( x \right) + g\left( x \right)\) không liên tục tại \({x_0}\)”. Theo em, ý kiến của bạn Nam đúng hay sai? Giải thích.

Phương pháp giải - Xem chi tiết

Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Lời giải chi tiết

Theo em ý kiến của bạn Nam là đúng.

Ta có: Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Hàm số \(y = g\left( x \right)\) không liên tục tại \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne g\left( {{x_0}} \right)\)

Do đó \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) + \mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne f\left( {{x_0}} \right) + g\left( {{x_0}} \right)\)

Vì vậy hàm số không liên tục tại x0.

  • Bài 4 trang 77 SGK Toán 11 tập 1 - Cánh Diều

    Xét tính liên tục của mỗi hàm số sau trên tập xác định của hàm số đó: a) \(f\left( x \right) = {x^2} + \sin x;\) b) \(g\left( x \right) = {x^4} - {x^2} + \frac{6}{{x - 1}};\) c) \(h\left( x \right) = \frac{{2x}}{{x - 3}} + \frac{{x - 1}}{{x + 4}}.\)

  • Bài 5 trang 77 SGK Toán 11 tập 1 - Cánh Diều

    Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + x + 1,\,\,x \ne 4\\2a + 1,\,\,x = 4\end{array} \right.\) a) Với a = 0, xét tính liên tục của hàm số tại x = 4. b) Với giá trị nào của a thì hàm số liên tục tại x = 4? c) Với giá trị nào của a thì hàm số liên tục trên tập xác định của nó?

  • Bài 6 trang 77 SGK Toán 11 tập 1 - Cánh Diều

    Hình 16 biểu thị độ cao h (m) của một quả bóng được đá lên theo thời gian t (s), trong đó \(h\left( t \right) = - 2{t^2} + 8t.\) a) Chứng tỏ hàm số \(h\left( t \right)\) liên tục trên tập xác định. b) Dựa vào đồ thị hãy xác định \(\mathop {\lim }\limits_{t \to 2} \left( { - 2{t^2} + 8t} \right).\)

  • Bài 2 trang 77 SGK Toán 11 tập 1 - Cánh Diều

    Trong các hàm số có đồ thị ở Hình 15a, 15b, 15c, hàm số nào liên tục trên tập xác định của hàm số đó? Giải thích.

  • Bài 1 trang 77 SGK Toán 11 tập 1 - Cánh Diều

    Dùng định nghĩa xét tính liên tục của hàm số (fleft( x right) = 2{x^3} + x + 1) tại điểm (x = 2.)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close