tuyensinh247

Bài 24 trang 103 SBT Hình học 10 Nâng cao

Giải bài tập Bài 24 trang 103 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Cho hai đường thẳng \(\Delta : \left\{ \begin{array}{l}x =  - 2t\\y = 1 + t\end{array} \right.  ,   \Delta ': \left\{ \begin{array}{l}x =  - 2 - t'\\y = t'\end{array} \right.\).

Viết phương trình đường thẳng đối  xứng với \(\Delta \)’ qua \(\Delta \).

Lời giải chi tiết

(h.100).

 

Dễ tìm được giao điểm \(M\) của \(\Delta \) và \(\Delta \)’ có tọa độ là \((-6 ; 4)\). Điểm \(N(-2 ; 0)\) thuộc \(\Delta \)’ và \(N\) khác \(M.\)

Đường thẳng \(d\) đi qua \(N\) và vuông góc với \(\Delta \) có phương trình

\( - 2(x + 2) + y = 0    \Leftrightarrow   2x - y + 4 = 0\).

Gọi \(H = d \cap \Delta \), suy ra \(H = \left( { -  \dfrac{6}{5} ;  \dfrac{8}{5}} \right)\). Do đó tọa độ điểm \(K\) đối xứng với điểm \(N\) qua \(H\) là \(\left( { -  \dfrac{2}{5} ;  \dfrac{{16}}{5}} \right)\).

Đường thẳng cần tìm là đường thẳng \(MK\) và có phương trình \(x+7y-22=0.\)

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close