Bài 21 trang 103 SBT Hình học 10 Nâng cao

Giải bài tập Bài 21 trang 103 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Một cạnh tam giác có trung điểm là \(M(-1 ; 1)\). Hai cạnh kia nằm trên các đường thẳng \(2x+6y+3=0\) và \(\left\{ \begin{array}{l}x = 2 - t\\y = t\end{array} \right.\). Lập phương trình đường thẳng chứa cạnh thứ ba của tam giác.

Lời giải chi tiết

(h.98).

 

Cách 1:

Xét tam giác \(ABC\) với phương trình các cạnh

\(AB: 2x + 6y + 3 = 0 ,\)

\(AC: \left\{ \begin{array}{l}x = 2 - t\\y = t\end{array} \right.\)

Và \(M(-1 ; 1)\) là trung điểm của cạnh \(BC\). Khi đó, ta có hệ:

\(\left\{ \begin{array}{l}{x_B} + {x_C} =  - 2 \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\{y_B} + {y_C} = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\\2{x_B} + 6{y_B} + 3 = 0 \,\,\,\,\,\,\,\,\,(3)\\{x_C} = 2 - t \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(4)\\{y_C} = t \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(5)\end{array} \right.\)

Thay \(x_C, y_C\) từ (4), (5) vào (1) (2) và sau đó kết hợp với (3) ta được \(t =  \dfrac{7}{4}\). Do đó \(C = \left( { \dfrac{1}{4} ;  \dfrac{7}{4}} \right)\).

Suy  ra \(\overrightarrow {MC}  = \left( { \dfrac{5}{4} ;  \dfrac{3}{4}} \right) =  \dfrac{1}{4}(5 ; 3)\). Phương trình của đường thẳng \(BC\) là \(\left\{ \begin{array}{l}x =  - 1 + 5t'\\y = 1 + 3t'\end{array} \right.\).

Cách 2:

Từ phương trình của \(AB, AC\), ta tìm được tọa độ của \(A\) và suy ra tọa độ của \(D\) (\(D\) đối xứng với \(A\) qua \(M\)). \(M\) là trung điểm của \(BC\) và \(AD\) nên \(ABCD\) là hình bình hành, do đó \(DC //AB\). Từ đó viết được phương trình của \(DC\) và tìm được tọa độ của điểm \(C\). Cuối cùng viết được phương trình của \(MC\) (hay phương trình của \(BC\)).

Loigiaihay.com

Quảng cáo

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close