Bài 20 trang 76 SGK Toán 9 tập 2

Giải bài 20 trang 76 SGK Toán 9 tập 2. Cho hai đường tròn (O) và (O') cắt nhau tại A và B

Quảng cáo

➡ Góp ý Loigiaihay.com, nhận quà liền tay! Góp ý ngay!💘

Đề bài

Cho hai đường tròn \((O)\) và \((O')\) cắt nhau tại \(A\) và \(B\). Vẽ các đường kính \(AC\) và \(AD\) của hai đường tròn. Chứng minh rằng ba điểm \(C, B, D\) thẳng hàng.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng góc nội tiếp chắn nửa đường tròn là góc vuông.

Từ đó chứng minh \(\widehat {ABC} + \widehat {ABD} = 180^\circ \) 

Lời giải chi tiết

 

Nối \(B\) với 3 điểm \(A, C, D\).

Xét đường tròn \(\left( O \right)\) có \(\widehat {ABC}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ABC} = 90^\circ .\)

Xét đường tròn \(\left( {O'} \right)\) có \(\widehat {ABD}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ABD} = 90^\circ .\)

Suy ra \(\widehat {ABC} + \widehat {ABD} = 90^\circ  + 90^\circ  = 180^\circ \) nên \(\widehat {CBD} = 180^\circ  \Rightarrow C,B,D\) thẳng hàng.

loigiaihay.com

Quảng cáo

Xem thêm tại đây: Bài 3. Góc nội tiếp
Gửi bài tập - Có ngay lời giải