Bài 2 trang 23 SGK Toán 11 tập 1 - Chân trời sáng tạo

Tính (sin left( {alpha + frac{pi }{6}} right),cos left( {frac{pi }{4} - alpha } right)) biết (sin alpha = - frac{5}{{13}},pi < alpha < frac{{3pi }}{2})

Quảng cáo

Đề bài

Tính \(\sin \left( {\alpha  + \frac{\pi }{6}} \right),\cos \left( {\frac{\pi }{4} - \alpha } \right)\) biết \(\sin \alpha  =  - \frac{5}{{13}},\pi  < \alpha  < \frac{{3\pi }}{2}\)

Phương pháp giải - Xem chi tiết

Áp dụng công thức: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\)

\(\begin{array}{l}\sin \left( {a + b} \right) = \sin a\cos b + \cos asinb\\\cos \left( {a - b} \right) = \cos a\cos b + \sin asinb\end{array}\)

Lời giải chi tiết

\(\cos \alpha  =  - \sqrt {1 - {{\left( { - \frac{5}{{13}}} \right)}^2}}  =  - \frac{{12}}{{13}}\) (vì \(\pi  < \alpha  < \frac{{3\pi }}{2}\))

\(\sin \left( {\alpha  + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha sin\frac{\pi }{6} = \frac{{ - 12 + 5\sqrt 3 }}{{26}}\)

\(\cos \left( {\frac{\pi }{4} - \alpha } \right) = \cos \frac{\pi }{4}\cos \alpha  + \sin \frac{\pi }{4}sin\alpha  = \frac{{ - 17\sqrt 2 }}{{26}}\)

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close