Bài 2 trang 132 SGK Đại số và Giải tích 11

Cho hàm số

Quảng cáo

Đề bài

Cho hàm số

\(f(x) = \left\{ \matrix{
\sqrt x + 1 \text{ nếu   }x\ge 0 \hfill \cr 
2x\text{ nếu   }x < 0 \hfill \cr} \right.\)

Và các dãy số \((u_n)\) với \(u_n= \dfrac{1}{n}\), \((v_n)\) với \(v_n= -\dfrac{1}{n}\).

Tính \(\lim u_n\), \(\lim v_n\), \(\lim f (u_n)\) và \(\lim f(v_n)\)

Từ đó có kết luận gì về giới hạn của hàm số đã cho khi \(x → 0\)?

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Sử dụng giới hạn cơ bản \(\lim \dfrac{1}{{{n^k}}} = 0\) với \(k\in N^*\)

- Thay \(u_n,v_n\) vào \(f(x)\) và tính giới hạn.

Quảng cáo
decumar

Lời giải chi tiết

\(\begin{array}{l}
\lim {u_n} = \lim \dfrac{1}{n} = 0\\
\lim {v_n} = \lim \left( { - \dfrac{1}{n}} \right) = 0\\
{u_n} = \dfrac{1}{n} > 0 \Rightarrow f\left( {{u_n}} \right) = \sqrt {\dfrac{1}{n}} + 1\\ \Rightarrow \lim f\left( {{u_n}} \right) = \lim \left( {\sqrt {\dfrac{1}{n}}  + 1} \right) = 1\\
{v_n} = - \dfrac{1}{n} < 0 \Rightarrow f\left( {{v_n}} \right) = - \dfrac{2}{n}\\ \Rightarrow \lim f\left( {{v_n}} \right) = \lim \left( { - \dfrac{2}{n}} \right)= 0
\end{array}\)

Do \(\lim f\left( {{u_n}} \right) = 1\) nên \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = 1\).

\(\lim f\left( {{v_n}} \right) = 0\) nên \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 0\).

Do đó \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\) nên không tồn tại giới hạn của hàm số tại \(x = 0\).

Vậy hàm số đã cho không có giới hạn khi \(x \to 0\).

Loigiaihay.com

Quảng cáo

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

close