Bài 1 trang 72 SGK Toán 11 tập 1 - Cánh Diều

Sử dụng định nghĩa, tìm các giới hạn sau: a) (mathop {lim }limits_{x to - 3} {x^2};) b) (mathop {lim }limits_{x to 5} frac{{{x^2} - 25}}{{x - 5}}.)

Quảng cáo

Đề bài

Sử dụng định nghĩa, tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - 3} {x^2};\)                      

b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}.\)

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa giới hạn hữu hạn của hàm số tại một điểm

Cho khoảng K chứa điểm \({x_0}\) và hàm số \(f(x)\) xác định trên K hoặc trên \(K\backslash \left\{ {{x_0}} \right\}\). Hàm số \(f(x)\) có giới hạn là số L khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to L\)

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to  - 3} {x^2};\)            

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} =  - 3.\)

Ta có \(\lim x_n^2 = {\left( { - 3} \right)^2} = 9\)

Vậy \(\mathop {\lim }\limits_{x \to  - 3} {x^2} = 9.\)

b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}.\)

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} = 5.\)

Ta có \(\lim \frac{{{x_n}^2 - 25}}{{{x_n} - 5}} = \lim \frac{{\left( {{x_n} - 5} \right)\left( {{x_n} + 5} \right)}}{{{x_n} - 5}} = \lim \left( {{x_n} + 5} \right) = \lim {x_n} + 5 = 5 + 5 = 10\)

Vậy \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}} = 10.\)

  • Bài 2 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Biết rằng hàm số (fleft( x right)) thỏa mãn (mathop {lim }limits_{x to {2^ - }} fleft( x right) = 3) và (mathop {lim }limits_{x to {2^ + }} fleft( x right) = 5.) Trong trường hợp này có tồn tại giới hạn (mathop {lim }limits_{x to 2} fleft( x right)) hay không? Giải thích.

  • Bài 3 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Tính các giới hạn sau: a) (mathop {lim }limits_{x to 2} left( {{x^2} - 4x + 3} right);) b) (mathop {lim }limits_{x to 3} frac{{{x^2} - 5x + 6}}{{x - 3}};) c) (mathop {lim }limits_{x to 1} frac{{sqrt x - 1}}{{x - 1}}.)

  • Bài 4 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Tính các giới hạn sau: a) (mathop {lim }limits_{x to + infty } frac{{9x + 1}}{{3x - 4}};) b) (mathop {lim }limits_{x to - infty } frac{{7x - 11}}{{2x + 3}};) c) (mathop {lim }limits_{x to + infty } frac{{sqrt {{x^2} + 1} }}{x};) d) (mathop {lim }limits_{x to - infty } frac{{sqrt {{x^2} + 1} }}{x};) e) (mathop {lim }limits_{x to {6^ - }} frac{1}{{x - 6}};) g) (mathop {lim }limits_{x to {7^ + }} frac{1}{{x - 7}}.)

  • Bài 5 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Một công ty sản xuất máy tính đã xác định được rằng, tính trung bình một nhân viên có thể lắp ráp được (Nleft( t right) = frac{{50t}}{{t + 4}},,left( {t ge 0} right)) bộ phận mỗi ngày sau t ngày đào tạo. Tính (mathop {lim }limits_{t to + infty } Nleft( t right)) và cho biết ý nghĩa của kết quả.

  • Bài 6 trang 72 SGK Toán 11 tập 1 - Cánh Diều

    Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50 000 + 105x. a) Tính chi phí trung bình (overline C left( x right)) để sản xuất một sản phẩm. b) Tính (mathop {lim }limits_{x to + infty } overline C left( x right)) và cho biết ý nghĩa của kết quả.

Quảng cáo

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close