Tổng hợp 10 đề thi học kì 1 Toán 10 Chân trời sáng tạo có đáp ánTổng hợp 10 đề thi học kì 1 Toán 10 có đáp án và lời giải chi tiết Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Đề 1 I. Phần trắc nghiệm (6 điểm – 30 câu) Câu 1: Trong các mệnh đề sau, mệnh đề nào đúng? A. \(\forall x \in \mathbb{R},\,x \le {x^2}\) B. \(\forall x \in \mathbb{R},\,\,\left| x \right| < 3 \Leftrightarrow x < 3\) C. \(\forall n \in \mathbb{N},\,\,{n^2} + 1\)chia hết cho 3 D. \(\exists a \in \mathbb{Q},\,{a^2} = 2\) Câu 2: Cho mệnh đề “\(\forall x \in \mathbb{R},{x^2} - x + 2023 < 0\)”. Mệnh đề nào sau đây là mệnh đề phủ định của mệnh đề đã cho? A. \(\forall x \in \mathbb{R},{x^2} - x + 2023 \ge 0\) B. \(\exists x \in \mathbb{R},{x^2} - x + 2023 < 0\) C. \(\exists x \in \mathbb{R},{x^2} - x + 2023 \ge 0\) D. \(\forall x \in \mathbb{R},{x^2} - x + 2023 > 0\) Câu 3: Cho \(A = \left\{ {1,2,3} \right\}\).Trong các khẳng định sau, khẳng định nào sai: A. \(\emptyset \subset A\) B. \(1 \in A\) C. \(\left\{ {1,2} \right\} \subset A\) D. \(\left\{ 3 \right\} \in A\) Câu 4: Các phần tử của tập hợp \(A = \left\{ {x \in \mathbb{R}:2{x^2} - 5x + 3 = 0} \right\}\)là A. \(A = \left\{ 0 \right\}\) B. \(A = \left\{ 1 \right\}\) C. \(A = \left\{ {\frac{3}{2}} \right\}\) D. \(A = \left\{ {1;\frac{3}{2}} \right\}\) Câu 5: Cho tập hợp \(A = \left\{ { - 2,1,2,3,4} \right\}\), \(B = \left\{ {x \in \mathbb{N}:{x^2} - 4 = 0} \right\}\). Mệnh đề nào sau đây là đúng? A. \(A \cap B = \left\{ 2 \right\}\) B. \(A \cap B = \left\{ { - 2,2} \right\}\) C. \(A \cup B = B\) D. \(A\backslash B = \left\{ {1,3,4} \right\}\) Câu 6: Biểu diễn trên trục số các tập hợp \(\left[ { - 4,3} \right]\backslash \left[ { - 2,1} \right]\) là hình nào dưới đây. A. B. C. D. Câu 7: Miền nghiệm của bất phương trình \(x + 2y < 4\) là nửa mặt phẳng không chứa điểm nào trong các điểm sau? A. \(\left( {0;0} \right)\) B. \(\left( {0;0} \right)\) C. \(\left( {4;2} \right)\) D. \(\left( {1; - 1} \right)\) Câu 8: Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{2x - 5y - 1 > 0}\\{2x + y + 5 > 0}\\{x + y + 1 < 0}\end{array}} \right.\)? A. \(\left( {0;0} \right)\) B. \(\left( {1;0} \right)\) C. \(\left( {0; - 2} \right)\) D. \(\left( {0;2} \right)\) Câu 9: Để điều tra các con trong mỗi gia đình của một chung cư gồm 100 gia đình . Người ta chọn ra 20 gia đình ở tầng 4 và thu được mẫu số liệu sau đây : 2 4 2 1 3 5 1 1 2 3 1 2 2 3 4 1 1 2 3 4. Kích thước mẫu là bao nhiêu? A. 5 B. 20 C. 4 D. 100 Câu 10: Thống kê điểm thi môn toán trong một kỳ thi của 400 HS. Người ta thấy có 80 bài được điểm 7. Hỏi tần suất của giá trị \({x_i} = 7\)là bao nhiêu? A. 80% B. 36% C. 20% D. 10% Câu 11: Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán
Số trung bình là? A. 6,1 B. 6,5 C. 6,7 D. 6,9 Câu 12: Chọn câu đúng trong bốn phương án trả lời đúng sau đây. Độ lệch chuẩn là : A. Bình phương của phương sai B. Một nửa của phương sai C. Căn bậc hai của phương sai D. Không phải là các công thức trên. Câu 13: 100 học sinh tham dự kì thi học sinh giỏi toán ( thang điểm là 20 ) . Kết quả cho trong bảng sau:
Số trung vị của bảng trên là : A. 14,23 B. 15,28 C. 15,50 D. 16,50 Câu 14: 100 học sinh tham dự kì thi học sinh giỏi toán (thang điểm là 20) . Kết quả cho trong bảng sau:
Phương sai là: A. 17,7 B. 15 C. 16 D. 15,50 Câu 15: Tìm tập xác định D của hàm số \(y = \frac{{3x - 1}}{{2x - 2}}\). A. \(D = \mathbb{R}\) B. \(D = \left( {1; + \infty } \right)\) C. \(D = \mathbb{R}\backslash \left\{ 1 \right\}\) D. \(D = \left[ {1; + \infty } \right)\) Câu 16: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \frac{{\sqrt {2 - x} + \sqrt {x + 2} }}{x}.\) A. \({\rm{D}} = \left[ { - 2;2} \right].\) B. \({\rm{D}} = \left( { - 2;2} \right)\backslash \left\{ 0 \right\}.\) C. \({\rm{D}} = \left[ { - 2;2} \right]\backslash \left\{ 0 \right\}.\) D. \({\rm{D}} = \mathbb{R}.\) Câu 17: Cho hàm số \(y = f\left( x \right) = \left| { - 5x} \right|\). Khẳng định nào sau đây là sai? A. \(f\left( { - 1} \right) = 5\) B. \(f\left( 2 \right) = 10\) C. \(f\left( { - 2} \right) = 10\) D. \(f\left( {\frac{1}{5}} \right) = {\rm{ \;}} - 1\) Câu 18: Điểm nào sau đây thuộc đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 4x + 4} }}{x}\). A. \(A\left( {2;0} \right)\) B. \(B\left( {3;3} \right)\) C. \(C\left( {1; - 1} \right)\) D. \(D\left( { - 1;3} \right)\) Câu 19: Giá trị nhỏ nhất của hàm số \(y = x - 2\sqrt {x + 2} \) là: A. – 4 B. – 3 C. – 2 D. - 1 Câu 20: Cho hàm số \(y = 2{x^2} + 6x + 3\) có đồ thị (P). Trục đối xứng của (P) là: A. \(x = \frac{{ - 3}}{2}\) B. \(x = \frac{{ - 2}}{3}\) C. \(x = 2\) D. \(x = - 2\) Câu 21: Giá trị của \(\cos {60^{\rm{o}}} + \sin {30^{\rm{o}}}\) bằng bao nhiêu? A. \(\frac{{\sqrt 3 }}{2}\) B. \(\sqrt 3 \) C. \(\frac{{\sqrt 3 }}{3}\) D. \(1\) Câu 22: Tam giác \(ABC\) có \(a = 8,c = 3,\widehat B = {60^0}.\) Độ dài cạnh \(b\) bằng bao nhiêu? A. \(49.\) B. \(\sqrt {97} \) C. \(7.\) D. \(\sqrt {61} .\) Câu 23: Cho tam giác ABC có \({a^2} = {b^2} + {c^2} - bc\). Số đo góc A là A. 30 B. 60 C. 45 D. 90 Câu 24: Cho tam giác \(ABC\) có góc \(\widehat {BAC} = 60^\circ \) và cạnh \(BC = \sqrt 3 \). Tính bán kính của đường tròn ngoại tiếp tam giác \(ABC\). A. \(R = 4\) B. \(R = 1\) C. \(R = 2\) D. \(R = 3\) Câu 25: Chọn phát biểu sai: A. Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi \(\overrightarrow {AB} = k\overrightarrow {BC} ,\,k \ne 0\) B. Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi \(\overrightarrow {AC} = k\overrightarrow {BC} ,\,k \ne 0\) C. Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi \(\overrightarrow {AB} = k\overrightarrow {AC} ,\,k \ne 0\) D. Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi \(\overrightarrow {AB} = k\overrightarrow {AC} \) Câu 26: Tính tổng \(\overrightarrow {MN} + \overrightarrow {PQ} + \overrightarrow {RN} + \overrightarrow {NP} + \overrightarrow {QR} \) A. \(\overrightarrow {MR} .\) B. \(\overrightarrow {MN} .\) C. \(\overrightarrow {PR} .\) D. \(\overrightarrow {MP} .\) Câu 27: Gọi \(O\) là tâm hình bình hành \(ABCD\). Đẳng thức nào sau đây sai? A. \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {CD} .\) B. \(\overrightarrow {OB} - \overrightarrow {OC} = \overrightarrow {OD} - \overrightarrow {OA} .\) C. \(\overrightarrow {AB} - \overrightarrow {AD} = \overrightarrow {DB} .\) D. \(\overrightarrow {BC} - \overrightarrow {BA} = \overrightarrow {DC} - \overrightarrow {DA} .\) Câu 28: Nếu G là trọng tâm tam giác ABC thì đẳng thức nào sau đây đúng. A. \(\overrightarrow {AG} = \frac{3}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\) B. \(\overrightarrow {AG} = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\) C. \(\overrightarrow {AG} = \frac{2}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\) D. \(\overrightarrow {AG} = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\) Câu 29: Cho tam giác ABC đều cạnh 4 cm. Giá trị của tích vô hướng \(\overrightarrow {AB} .\overrightarrow {BC} .\) A. 8 B. – 8 C. 4 D. - 4 Câu 30: Cho tam giác ABC. \(H\) là trung điểm của \(BC\). Tính \(\left| {\overrightarrow {CA} - \overrightarrow {HC} } \right|.\) A. \(\left| {\overrightarrow {CA} - \overrightarrow {HC} } \right| = \frac{a}{2}.\) B. \(\left| {\overrightarrow {CA} - \overrightarrow {HC} } \right| = \frac{{3a}}{2}.\) C. \(\left| {\overrightarrow {CA} - \overrightarrow {HC} } \right| = \frac{{2\sqrt 3 a}}{3}.\) D. \(\left| {\overrightarrow {CA} - \overrightarrow {HC} } \right| = \frac{{a\sqrt 7 }}{2}.\) II. Tự luận (4 điểm) Câu 1: 592203) Lớp 10A có 40 học sinh trong đó có 10 bạn giỏi Toán, 15 bạn giỏi Lý, và 22 bạn không giỏi môn học nào trong hai môn Toán, Lý. Hỏi lớp 10A có bao nhiêu bạn học sinh vừa giỏi Toán, vừa giỏi Lý? Câu 2: 592204) Cho hàm số bậc hai \(y = a{x^2} + bx + c\) có f(0) = 1, f(1) = 4, f(2) = 5. a. Hãy xác định các hệ số a, b, c. b. Xác định tập giá trị, lập bảng biến thiên và vẽ đồ thị hàm số Câu 3: 592205) Một máy bay trực thăng A quan sát hai tàu B và C cách trực thăng 23,8 km và C cách trực thăng 31,9 km. Góc nhìn \(\angle BAC\)từ trực thăng đến hai thuyền là 83,6 độ. Hỏi hai chiếc tàu cách nhau bao xa và độ cao của máy bay so với mặt nước biển là bao nhiêu? Làm tròn kết quả đến hàng phần trăm.
Câu 4. 592206) Cho tam giác ABC có trung tuyến AM, BN, CP. Chứng minh a. \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \overrightarrow 0 \) b. \(\overrightarrow {AP} + \overrightarrow {BM} = \frac{1}{2}\overrightarrow {AC} \) ----- HẾT ----- Giải đề 1 HƯỚNG DẪN CHI TIẾT I. Phần trắc nghiệm (6 điểm – 30 câu)
Câu 1 (TH): Phương pháp: Mệnh đề chưa biến sai khi tìm được ít nhất 1 giá trị không thỏa mãn. Cách giải: Dùng phương pháp loại trừ A sai khi \(x = \frac{1}{2}\), B sai vì x = -4 không thỏa mãn, D sai do \(a = \sqrt 2 \)không là số hữu tỉ Chọn C. Câu 2 (TH): Phương pháp: Phủ định của \(\forall \) là \(\exists \), phủ định của < là \( \ge \) Cách giải: Phủ định của \(\forall x \in \mathbb{R},{x^2} - x + 2023 < 0\) là \(\exists x \in \mathbb{R},{x^2} - x + 2023 \ge 0\). Chọn C. Câu 3 (NB): Phương pháp: Kí hiệu \( \in \) để chỉ phần tử thuộc tập hợp. Kí hiệu \( \subset \) để chỉ tập hợp là tập hợp con của 1 tập hợp. Cách giải: D sai do \(\left\{ 3 \right\}\)là 1 tập hợp nên ta không dùng kí hiệu \( \in \). Chọn D. Câu 4 (TH): Phương pháp: phương trình \(2{x^2} - 5x + 3 = 0\) và đối chiếu điều kiện của x Cách giải: \(2{x^2} - 5x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{3}{2} \in \mathbb{R}\\x = 1 \in \mathbb{R}\end{array} \right. \Rightarrow A = \left\{ {1;\frac{3}{2}} \right\}\) Chọn D. Câu 5 (TH): Phương pháp: Áp dụng định nghĩa tìm các phép toán trên tập hợp. Cách giải: \(B = \left\{ {x \in \mathbb{N}:{x^2} - 4 = 0} \right\} = \left\{ 2 \right\} \Rightarrow A \cap B = \left\{ 2 \right\}\) Chọn A. Câu 6 (TH): - Phương pháp: Biểu diễn các tập hợp trên trục số và áp dụng định nghĩa các phép toán trên tập hợp. Cách giải:
Chọn B. Câu 7 (NB): Phương pháp: Thay tọa độ các điểm vào bất phương trình và kiểm tra tính đúng sai. Cách giải: Vì 4 + 2.2=8 > 4 nên \(\left( {4;2} \right)\) không thuộc miền nghiệm của bất phương trình \(x + 2y < 4\). Chọn C. Câu 8 (TH): Phương pháp: Thay tọa độ các điểm vào bất phương trình và kiểm tra tính đúng sai Cách giải: Vì \(\left( {0; - 2} \right)\)thỏa mãn cả 3 phương trình nên \(\left( {0; - 2} \right)\) thuộc miền nghiệm của hệ bất phương trình. Chọn C. Câu 9 (NB): Phương pháp: Kích thước mẫu là số phần tử của 1 mẫu số liệu Cách giải: Có tất cả 20 mẫu số liệu thống kê nên kích thước mẫu bằng 20. Chọn B. Câu 10 (TH): Phương pháp: Tần suất \({f_i}\)của giá trị \({x_i}\) là tỉ số giữa tần số n và kích thước mẫu N có công thức \({f_i} = \frac{n}{N}\). Cách giải: \({f_i} = \frac{{80}}{{400}} = 0,2 = 20\% \) Chọn C. Câu 11 (TH): Phương pháp: Số trung bình là \(\overline x = \frac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}\) Cách giải: \(\overline x = \frac{{3.2 + 4.3 + 5.7 + 6.18 + 7.3 + 8.2 + 9.4 + 10.1}}{{40}} = 6,1\) Chọn A. Câu 12 (TH): Phương pháp: Độ lệch chuẩn là căn bậc hai của phương sai Cách giải: Chọn C. Câu 13 (TH): Phương pháp: Dùng MTCT để tính Cách giải: Chọn C. Câu 14 (TH): Phương pháp: Dùng MTCT để tính Cách giải: Chọn C. Câu 15 (NB): Phương pháp: Hàm phân thức xác định khi mẫu thức khác 0. Cách giải: ĐKXĐ: \(2x - 2 \ne 0 \Leftrightarrow x \ne 1\). Vậy TXĐ của hàm số là \(D = \mathbb{R}\backslash \left\{ 1 \right\}\). Chọn C. Câu 16 (TH): Phương pháp: Căn bậc 2 xác định khi biểu thức trong căn không âm. Cách giải: ĐKXĐ: \(\left\{ \begin{array}{l}2 - x \ge 0\\x + 2 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\x \ge - 2\end{array} \right. \Leftrightarrow - 2 \le x \le 2\). Vậy TXĐ của hàm số là \({\rm{D}} = \left[ { - 2;2} \right].\). Chọn A. Câu 17 (NB): Phương pháp: Tính giá trị hàm số tại 1 điểm. Cách giải: \(\begin{array}{*{20}{l}}{f\left( { - 1} \right) = \left| { - 5.\left( { - 1} \right)} \right| = 5}\\{f\left( 2 \right) = \left| { - 5.2} \right| = 10}\\{f\left( { - 2} \right) = \left| { - 5.\left( { - 2} \right)} \right| = 10}\\{f\left( {\frac{1}{5}} \right) = \left| { - 5.\frac{1}{5}} \right| = 1}\end{array}\) Vậy đáp án D sai. Chọn D. Câu 18 (TH): Phương pháp: Thay tọa độ các điểm ở các đáp án vào hàm số. Điểm nào thỏa mãn hàm số thì sẽ thuộc đồ thị hàm số. Cách giải: Thay tọa độ điểm \(A\left( {2;0} \right)\) vào hàm số: \(0 = \frac{{\sqrt {{2^2} - 4.2 + 4} }}{2}\) (đúng) nên A thuộc đồ thị hàm số. Chọn A. Câu 19 (VD): Phương pháp: Phân tích biêu thức về dạng có hằng đẳng thức Cách giải: \(D = [ - 2; + \infty )\) \(y = x - 2\sqrt {x + 2} = x + 2 - 2\sqrt {x + 2} + 1 - 1 = {\left( {\sqrt {x + 2} - 1} \right)^2} - 1 \ge - 1\) khi x = -1 Chọn D. Câu 20 (NB): Phương pháp: Trục đối xứng của hàm số bậc hai \(y = a{x^2} + bx + c\) là \(x = \frac{{ - b}}{{2a}}\) Cách giải: \(y = 2{x^2} + 6x + 3\) có a = 2, b = 6, c = 3 nên trục đối xứng \(x = \frac{{ - 6}}{{2.2}} = \frac{{ - 3}}{2}\) Chọn A. Câu 21 (NB): Phương pháp: Dùng bảng các giá trị lượng giác đặc biệt. Cách giải: \(\cos {60^{\rm{o}}} + \sin {30^{\rm{o}}} = \frac{1}{2} + \frac{1}{2} = 1\) Chọn D. Câu 22 (NB): Phương pháp: Dùng định lý cosin \({b^2} = {a^2} + {c^2} - 2ac.\cos B\) Cách giải: \({b^2} = {a^2} + {c^2} - 2ac.\cos B = {8^2} + {3^2} - 2.3.8.\cos 60 = 49 \Rightarrow b = 7\) Chọn C. Câu 23 (TH): Phương pháp: Dùng định lý cosin \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\) Cách giải: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{b^2} + {c^2} - \left( {{b^2} + {c^2} - bc} \right)}}{{2bc}} = \frac{1}{2} \Rightarrow \angle A = {60^0}\) Chọn B. Phương pháp: Dùng định lý sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\) Cách giải: \(\frac{a}{{\sin A}} = 2R \Leftrightarrow \frac{{\sqrt 3 }}{{\sin 60}} = 2R \Rightarrow R = 1\) Chọn B. Câu 25 (NB): Phương pháp: Dùng định lý về 3 điểm thẳng hàng. Cách giải: D sai do khi k = 0 thì \(\overrightarrow {AB} = \overrightarrow 0 \) Chọn D. Câu 26 (TH): Phương pháp: Dùng quy tắc cộng, trừ hai vecto Cách giải: \(\begin{array}{l}\overrightarrow {MN} + \overrightarrow {PQ} + \overrightarrow {RN} + \overrightarrow {NP} + \overrightarrow {QR} = \overrightarrow {MN} + \overrightarrow {NP} + \overrightarrow {PQ} + \overrightarrow {QR} + \overrightarrow {RN} \\\,\, = \overrightarrow {MP} + \overrightarrow {PR} + \overrightarrow {RN} = \overrightarrow {MR} + \overrightarrow {RN} = \overrightarrow {MN} \end{array}\) Chọn B. Câu 27 (VD): Phương pháp: Dùng quy tắc cộng, trừ hai vecto Cách giải: \(\overrightarrow {OB} - \overrightarrow {OC} = \overrightarrow {CB} ,\,\,\overrightarrow {OD} - \overrightarrow {OA} = \overrightarrow {AD} \)mà \(\overrightarrow {CB} ,\,\,\overrightarrow {AD} \)là 2 vecto ngược hướng nên B sai Chọn B. Câu 28 (VD): Phương pháp: Nếu M là trung điểm của AB thì với mọi điểm O là luôn có \(\overrightarrow {OA} + \overrightarrow {OB} = 2\overrightarrow {OM} \) Cách giải: Gọi M là trung điểm của AC khi đó \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \). Do G là trọng tâm tam giác ABC nên \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \). Suy ra \(\overrightarrow {AG} = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\) Chọn D. Phương pháp: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\,\overrightarrow b } \right)\) Cách giải: \(\overrightarrow {AB} .\overrightarrow {BC} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {BC} } \right|.\cos \left( {\overrightarrow {AB} ,\,\overrightarrow {BC} } \right) = 4.4.\cos 120 = - 8\) Chọn B. Câu 30 (VD): Phương pháp: Cách giải:
Gọi \(D\) là điểm thỏa mãn tứ giác \(ACHD\) là hình bình hành \( \Rightarrow AHBD\) là hình chữ nhật. \(\left| {\overrightarrow {CA} - \overrightarrow {HC} } \right| = \left| {\overrightarrow {CA} + \overrightarrow {CH} } \right| = \left| {\overrightarrow {CD} } \right| = CD.\) Ta có \(CD = \sqrt {B{D^2} + B{C^2}} = \sqrt {A{H^2} + B{C^2}} = \sqrt {\frac{{3{a^2}}}{4} + {a^2}} = \frac{{a\sqrt 7 }}{2}.\) Chọn D. II. Phần tự luận (4 điểm) Câu 1 (VD): Phương pháp: Dùng các phép toán trên tập hợp Cách giải: Gọi tập hợp các học sinh giỏi Toán là A. Khi đó n(A)=10 Gọi tập hợp các học sinh giỏi Lý là B. Khi đó n(B)=15 Số học sinh học giỏi toán hoặc giỏi lý là \(n\left( {A \cup B} \right)\) là 40 – 22=18 học sinh Vậy số học sinh giỏi cả 2 môn Toán Lý là \(n\left( {A \cap B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cup B} \right) = 10 + 15 - 18 = 7\) Vậy có tất cả 7 học sinh vừa giỏi Toán vừa giỏi Lý. Câu 2 (VD): Phương pháp: Tính giá trị của hàm số tại các điểm cho trước, lập hệ phương trình tìm a, b, c. Cách giải: a. Từ f(0) = 1, f(1) = 4, f(2) = 5 ta có hệ phương trình \(\left\{ \begin{array}{l}a{.0^2} + b.0 + c = 1\\a{.1^2} + b.1 + c = 4\\a{.2^2} + b.2 + c = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 1\\a + b + 1 = 4\\4a + 2b + 1 = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 1\\a = - 1\\b = 4\end{array} \right.\) Vậy hàm số có dạng \(y = - {x^2} + 4x + 1\) b. \(y = - {x^2} + 4x + 1\) Đỉnh S có tọa độ \(x = \frac{{ - 4}}{{2.\left( { - 1} \right)}} = 2\), \(y = - {2^2} + 4.2 + 1 = 5\) Vì hàm số có a = -1 < 0 nên ta có bảng biến thiên
Vậy hàm số đạt giá trị lớn nhất bằng 5 khi x = 1. Tập giá trị của hàm số là \(( - \infty ,5]\) Đồ thị: Trong mặt phẳng Oxy đồ thị của \(y = - {x^2} + 4x + 1\)là parabol (P) có: Đỉnh S (2,5) Trục đối xứng là x = 2 Bề lõm quay xuống Cắt trục tung tại điểm (0,1)
Câu 3 (TH): Phương pháp: Dùng các định cosin, công thức diện tích tỏng tam giác. Cách giải: Ta có \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A = 23,{8^2} + 31,{9^2} - 2.23,8.31,9.\cos 83,6 = 1414,791\) Suy ra \(BC \approx 37,61\)km Gọi khoảng cách từ máy bay A đến mặt nước biển là d. Khi đó áp dụng công thức diện tích tam giác ta có \(\begin{array}{l}S = \frac{1}{2}.AB.AC.\sin A = \frac{1}{2}.d.BC\\ \Leftrightarrow d = \frac{{AB.AC.\sin A}}{{BC}} = \frac{{23,8.31,9.\sin 83,6}}{{37,61}} \approx 20,06\end{array}\) Vậy khoảng cách giữa hai tàu BC là 37,61km và độ cao của máy bay A so với mặt nước biển là 20,06km. Câu 4 (VD): Phương pháp: Nếu M là trung điểm của AB thì với mọi điểm O là luôn có \(\overrightarrow {OA} + \overrightarrow {OB} = 2\overrightarrow {OM} \) Cách giải:
a. Ta có \(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AB} } \right),\,\overrightarrow {BN} = \frac{1}{2}\left( {\overrightarrow {BC} + \overrightarrow {BA} } \right),\,\overrightarrow {CP} = \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {CB} } \right)\) nên \(\begin{array}{l}\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AB} } \right) + \frac{1}{2}\left( {\overrightarrow {BC} + \overrightarrow {BA} } \right) + \frac{1}{2}\left( {\overrightarrow {CA} + \overrightarrow {CB} } \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {BA} + \overrightarrow {CA} + \overrightarrow {CB} } \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{2}.\overrightarrow 0 = \overrightarrow 0 \end{array}\)(đpcm) b. Vì P là trung điểm của AB nên \(\overrightarrow {AP} = \overrightarrow {PB} \). Khi đó ta có \(\overrightarrow {AP} + \overrightarrow {BM} = \overrightarrow {PB} + \overrightarrow {BM} = \overrightarrow {PM} \). Mà PM là đường trung bình trong tam giác ABC nên suy ra \(\overrightarrow {PM} = \frac{1}{2}\overrightarrow {AC} \). Suy ra \(\overrightarrow {AP} + \overrightarrow {BM} = \frac{1}{2}\overrightarrow {AC} \) (đpcm). Đề 2 I. Phần trắc nghiệm (6 điểm – 30 câu) Câu 1: Trong các câu sau đâu là mệnh đề chứa biến? A. 2 là số nguyên tố. B. 17 là số chẵn C. x + y > 0 D. Hình vuông có hai đường chéo vuông góc Câu 2: Cho mệnh đề ,. Xét tính đúng sai của hai mệnh đề P, Q. A. P đúng, Q sai B. P sai, Q đúng C. P, Q đều đúng D. P, Q đều sai Câu 3: Liệt kê các phần tử của phần tử tập hợp \(X = \left\{ {x \in \mathbb{Z}|9{x^2} - 8x - 1 = 0} \right\}\). A. \(X = \left\{ 0 \right\}\) B. \(X = \left\{ 1 \right\}\) C. \(X = \left\{ {\frac{3}{2}} \right\}\) D. \(X = \left\{ {1;\frac{3}{2}} \right\}\) Câu 4: Cho \(X = \left\{ {7;2;8;4;9;12} \right\}\);\(Y = \left\{ {1;3;7;4} \right\}\). Tập nào sau đây bằng tập \(X \cap Y\)? A. \(\left\{ {1;2;3;4;8;9;7;12} \right\}\) B. \(\left\{ {2;8;9;12} \right\}\) C. \(\left\{ {4;7} \right\}\) D. \(\left\{ {1;3} \right\}\) Câu 5: Cho hai tập hợp \(A = \left[ { - 2;7} \right),B = \left( {1;9} \right]\). Tìm \(A \cup B\). A. \(\left( {1;7} \right)\) B. \(\left[ { - 2;9} \right]\) C. \(\left[ { - 2;1} \right)\) D. \(\left( {7;9} \right]\) Câu 6: Cho tập hợp \(A = \left[ {m;m + 2} \right],B\left[ { - 1;2} \right]\). Tìm điều kiện của m để \(A \subset B\). A. \(m \le - 1\) hoặc \(m \ge 0\) B. \( - 1 \le m \le 0\) C. \(1 \le m \le 2\) D. \(m < 1\) hoặc \(m > 2\) Câu 7: Trong các cặp số sau đây, cặp nào không là nghiệm của bất phương trình \(2x + y < 1\) A. \(\left( { - 2;1} \right)\) B. \(\left( {3; - 7} \right)\) C. \(\left( {0;1} \right)\) D. \(\left( {0;0} \right)\) Câu 8: Miền nghiệm của bất phương trình \(3x + 2y > - 6\) là
A. B. C. D. Câu 9: Thống kê điểm thi môn toán trong một kì thi của 400 em học sinh . Người ta thấy số bài được điểm 10 chiếm tỉ lệ 2,5 % . Hỏi tần số của giá trị xi = 10 là bao nhiêu? A. 10 B. 20 C. 25 D. 5 Câu 10: Trong các loại biểu đồ sau, loại biểu đồ nào thích hợp nhất cho việc thể hiện bảng phân bố tần suất. A. Biểu đồ hình quạt B. Biểu đồ hình cột C. Biểu đồ hình cột kép D. Biểu đồ đa giác tần số Câu 11: Cho dãy số liệu thống kê: 21,23,24,25,22,20. Số trung bình cộng của dãy số liệu thống kê đã cho là A. 23.5 B. 22 C. 22.5 D. 14 Câu 12: Cho bảng phân bố tần số sau :
Mệnh đề đúng là : A. Tần suất của số 4 là 20% B. Tần suất của số 2 là 20% C. Tần suất của số 5 là 45 D. Tần suất của số 5 là 90% Câu 13: Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán
Số trung vị là? A. 5 B. 6 C. 6,5 D. 7 Câu 14: Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán
Độ lệch chuẩn là: A. 1,577 B. 2.553 C. 2,49 D. 6,1 Câu 15: Điểm nào sau đây thuộc đồ thị hàm số \(y = \frac{1}{{x - 1}}.\) A. \({M_1}\left( {2;1} \right)\) B. \({M_2}\left( {1;1} \right).\) C. \({M_3}\left( {2;0} \right).\) D. \({M_4}\left( {0; - 2} \right).\) Câu 16: Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{2}{{x - 1}}}&{x \in \left( { - \infty ;0} \right)}\\{\sqrt {x + 1} }&{x \in \left[ {0;2} \right]}\\{{x^2} - 1}&{x \in \left( {2;5} \right]}\end{array}} \right.\). Tính \(f\left( 4 \right).\) A. \(f\left( 4 \right) = \frac{2}{3}.\) B. \(f\left( 4 \right) = 15.\) C. \(f\left( 4 \right) = \sqrt 5 .\) D. Không tính được. Câu 17: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \frac{{2x - 1}}{{\left( {2x + 1} \right)\left( {x - 3} \right)}}.\) A. \({\rm{D}} = \left( {3; + \infty } \right).\) B. \({\rm{D}} = \mathbb{R}\backslash \left\{ { - \frac{1}{2};3} \right\}.\) C. \({\rm{D}} = \left( { - \frac{1}{2}; + \infty } \right)\) D. \({\rm{D}} = \mathbb{R}.\) Câu 18: Cho hàm số \(f\left( x \right) = 4 - 3x\). Khẳng định nào sau đây đúng? A. Hàm số đồng biến trên \(\left( { - \infty ;\frac{4}{3}} \right).\) B. Hàm số nghịch biến trên \(\left( {\frac{4}{3}; + \infty } \right).\) C. Hàm số đồng biến trên \(\mathbb{R}.\) D. Hàm số đồng biến trên \(\left( {\frac{3}{4}; + \infty } \right).\) Câu 19: Cho đồ thị hàm số \(y = {x^3}\) như hình bên. Khẳng định nào sau đây sai?
A. Hàm số đồng biến trên khoảng \(\left( { - \infty ;0} \right).\) B. Hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right).\) C. Hàm số đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right).\) D. Hàm số đồng biến tại gốc tọa độ \(O\). Câu 20: Cho hàm số \(y = {x^2} - 4x + 5\). Tọa độ đỉnh S là A. (2, 1) B. (2, 5) C. (-2, 17) D. (-2, 5) Câu 21: Cho tam giác \(ABC\). Tìm công thức sai: A. \(\frac{a}{{\sin A}} = 2R\,.\) B. \(\sin A = \frac{a}{{2R}}\,.\) C. \(b\sin B = 2R\,.\) D. \(\sin C = \frac{{c\sin A}}{a}\,.\) Câu 22: Tam giác \(ABC\) có \(a = 5,c = 3,\widehat B = {60^0}.\) Độ dài cạnh \(b\) bằng bao nhiêu? A. \(\sqrt {97} \) B. \(\sqrt {61} .\) C. 7 D. \(\sqrt {19} \) Câu 23: Cho hình thoi \(ABCD\) có cạnh bằng \(a\). Góc \(\widehat {BAD} = 30^\circ \). Diện tích hình thoi \(ABCD\) là: A. \(\frac{{{a^2}}}{4}\) B. \(\frac{{{a^2}}}{2}\) C. \(\frac{{{a^2}\sqrt 3 }}{2}\) D. \({a^2}\) Câu 24: Cho biết \(\tan \alpha = - 5\). Giá trị của biểu thức \(E = \frac{{2\cos \alpha - 3\sin \alpha }}{{3\cos \alpha - \sin \alpha }}\) bằng bao nhiêu? A. \(\frac{{13}}{{16}}\) B. \( - \frac{{13}}{{16}}\) C. \(\frac{{17}}{8}\) D. \( - \frac{{17}}{8}\) Câu 25: Cho ba điểm \(A,{\rm{ }}B,{\rm{ }}C\) phân biệt. Khẳng định nào sau đây đúng? A. \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {BC} .\) B. \(\overrightarrow {MP} + \overrightarrow {NM} = \overrightarrow {NP} .\) C. \(\overrightarrow {CA} + \overrightarrow {BA} = \overrightarrow {CB} .\) D. \(\overrightarrow {AA} + \overrightarrow {BB} = \overrightarrow {AB} .\) Câu 26: Cho \(\overrightarrow a \) và \(\overrightarrow b \) là các vectơ khác \(\overrightarrow 0 \) với \(\overrightarrow a \) là vectơ đối của \(\overrightarrow b \). Khẳng định nào sau đây sai? A. Hai vectơ \(\overrightarrow a ,\;\overrightarrow b \) cùng phương. B. Hai vectơ \(\overrightarrow a ,\;\overrightarrow b \) ngược hướng. C. Hai vectơ \(\overrightarrow a ,\;\overrightarrow b \) cùng độ dài. D. Hai vectơ \(\overrightarrow a ,\;\overrightarrow b \) chung điểm đầu. Câu 27: Cho tam giác \(ABC\) cân ở \(A\), đường cao \(AH\). Khẳng định nào sau đây sai? A. \(\overrightarrow {AB} = \overrightarrow {AC} .\) B. \(\overrightarrow {HC} = - \overrightarrow {HB} .\) C. \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {AC} } \right|.\) D. \(\overrightarrow {BC} = 2\overrightarrow {HC} .\) Câu 28: Cho tam giác \(ABC\) có \(M\) thỏa mãn điều kiện \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \vec 0\). Xác định vị trí điểm \(M.\) A. \(M\) thỏa mãn hình bình hành \(ACBM.\) B. \(M\) là trung điểm của đoạn thẳng \(AB.\) C. \(M\) trùng với \(C.\) D. \(M\) là trọng tâm tam giác \(ABC.\) Câu 29: Cho tam giác đều \(ABC\) có cạnh bằng \(a\) và chiều cao \(AH\). Mệnh đề nào sau đây là sai? A. \(\overrightarrow {AH} .\overrightarrow {BC} = 0.\) B. \(\left( {\overrightarrow {AB} ,\overrightarrow {HA} } \right) = {150^0}.\) C. \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{{{a^2}}}{2}.\) D. \(\overrightarrow {AC} .\overrightarrow {CB} = \frac{{{a^2}}}{2}.\) Câu 30: Cho hình chữ nhật \(ABCD\) có \(AB = 8,{\rm{ }}AD = 5.\) Tích \(\overrightarrow {AB} .\overrightarrow {BD} .\) A. 62 B. 64 C. 14 D. -14 II. Phần tự luận (4 điểm) Câu 1: a. Cho hai tập hợp \(S = \left\{ {1;2;3;4} \right\},T = \left\{ {2;4;6} \right\}\). Tìm \(S \cap T,\,\,S \cup T,\,\,S\backslash T.\) b. Cho tập hợp \(A = \left( { - \infty ;2023} \right)\), \(B = \left[ {4 - 3m; + \infty } \right)\). Tìm \(m\) để \(\mathop C\nolimits_\mathbb{R} B \subset A\). Câu 2: Một cột tháp truyền thông được xây dựng trên nóc của một tòa nhà như hình vẽ. Hãy tính chiều cao của cột tháp
Câu 3: Cho hàm số bậc hai \(y = {x^2} - 2x + 2m - 1\)có đồ thị (P). Biết hàm số đi qua A (2, 1) a. Xác định hàm số b. Vẽ bảng biến thiên, vẽ đồ thị (P). Câu 4: Cho tam giác \(ABC\). Tìm điểm M thỏa mãn điều kiện: a. \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \). b. \(\left| {\overrightarrow {MB} - \overrightarrow {MC} } \right| = \left| {\overrightarrow {BM} - \overrightarrow {BA} } \right|\)
----- HẾT ----- Giải đề 2 HƯỚNG DẪN GIẢI CHI TIẾT I. Phần trắc nghiệm (6 điểm – 30 câu)
Câu 1 (NB): Phương pháp: Mệnh đề chứa biến là mệnh đề có biến số Cách giải: x + y > 0 là mệnh đề chứa biến Chọn C. Câu 2 (NB): Phương pháp: Mệnh đề chứa biến sai khi có ít nhất 1 giá trị của biến sai. Cách giải: sai khi x = 1, đúng do có 1 giá trị x = 1 thỏa mãn. Chọn B. Câu 3 (NB): Phương pháp: phương trình và đối chiếu điều kiện \(x \in \mathbb{Z}\). Cách giải: \(9{x^2} - 8x - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \mathbb{Z}\\x = \frac{{ - 1}}{9} \notin \mathbb{Z}\end{array} \right.\). Suy ra \(X = \left\{ 1 \right\}\) Câu 4 (NB): Phương pháp: Tìm giao 2 tập hợp ta tìm phần tử chung của hai tập hợp đó. Cách giải: \(X \cap Y\)=\(\left\{ {4;7} \right\}\) Chọn C. Câu 5 (TH): Phương pháp: Thể hiện các tập hợp trên trục số và tìm hợp của chúng Cách giải:
Chọn B. Câu 6 (VD): Phương pháp: \(A \subset B\) khi mọi phần tử của A đều là phần tử của B. Cách giải: \(A \subset B \Leftrightarrow \left\{ \begin{array}{l}m \ge - 1\\m + 2 \le 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge - 1\\m \le 0\end{array} \right. \Leftrightarrow - 1 \le m \le 0\) Câu 7 (NB): Phương pháp: Thay tọa độ x, y vào bât phương trình và kiểm tra tính đúng sai. Cách giải: Vì 2.0 + 1 = 1 không nhỏ hơn 1 nên \(\left( {0;1} \right)\) không thuộc miền nghiệm của bất phương trình. Chọn C. Câu 8 (NB): Phương pháp: Chọn 2 điểm bất kì thuộc hoặc không thuộc miền nghiệm để kiểm tra đáp án. Thông thường ta hay chọn gốc tọa độ O(0,0). Cách giải: Vì điểm (0,0) và (3,0) thuộc miền nghiệm nên hình vẽ A đúng. Chọn A. Câu 9 (NB): Phương pháp: Tần suất \({f_i} = \frac{n}{N} \Rightarrow n = {f_i}.N\) Cách giải: \(n = {f_i}.N = 2,5\% .400 = 10\) Chọn A. Câu 10 (NB): Phương pháp: Biểu đồ hình quạt thích hợp nhất để thể hiện bảng phân bố tần suất. Cách giải: Biểu đồ hình quạt thích hợp nhất để thể hiện bảng phân bố tần suất. Chọn A. Câu 11 (NB): Phương pháp: Số trung bình là \(\overline x = \frac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}\) Cách giải: \(\overline x = \frac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n} = \frac{{21 + 23 + 24 + 25 + 22 + 20}}{6} = 22.5\) Chọn C. Câu 12 (TH): Phương pháp: Tần suất \({f_i} = \frac{n}{N} \Rightarrow n = {f_i}.N\) Cách giải: Tần suất của số 4 là \(f = \frac{{10}}{{50}} = \frac{1}{5} = 20\% \) Chọn A. Câu 13 (TH): Phương pháp: Dùng MTCT để tính Cách giải: Chọn B. Câu 14 (TH): Phương pháp: Dùng MTCT để tính Cách giải: Chọn A. Câu 15 (TH): Phương pháp: Thay tọa độ từng điểm và kiểm tra tính đúng sai. Cách giải: Thay tạo độ \({M_1}\left( {2;1} \right)\) vào \(y = \frac{1}{{x - 1}}\) ta thấy \(1 = \frac{1}{{2 - 1}}\). Vậy \({M_1}\left( {2;1} \right)\) thuộc đồ thị hàm số Chọn A. Câu 16 (TH): Phương pháp: Kiểm tra xem x = 4 thuộc khoảng nào của hàm số. Sau đó thay x = 4 vào hàm thỏa mãn và tính. Cách giải: Vì x = 4 thuộc \(\left( {2;5} \right]\) nên thay x = 4 vào \(f = {x^2} - 1\) ta được f(4) = 15 Chọn B. Câu 17 (TH): Phương pháp: Hàm số xác định khi mẫu số khác 0 và biểu thức trong căn bậc hai không âm. Cách giải: Hàm số \(y = \frac{{2x - 1}}{{\left( {2x + 1} \right)\left( {x - 3} \right)}}\) xác định khi \(\left( {2x + 1} \right)\left( {x - 3} \right) \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{{ - 1}}{2}\\x \ne 3\end{array} \right. \Rightarrow D = \mathbb{R}\backslash \left\{ {\frac{{ - 1}}{2},3} \right\}\) Chọn B. Câu 18 (NB): Phương pháp: Hàm số bậc nhất y = a.x + b đồng biến khi a > 0 và nghịch biến khi a < 0. Cách giải: \(f\left( x \right) = 4 - 3x\) có hệ số a = - 3 < 0 nên hàm số nghịch biến trên \(\mathbb{R}.\) Chọn B. Câu 19 (TH): Phương pháp: Phần đồ thị có hướng đi lên là đồng biến. Cách giải: Hàm số không đồng biến tại 1 điểm nên D sai. Chọn D. Câu 20 (NB): Phương pháp: Hoành độ của đỉnh là \(x = \frac{{ - b}}{{2a}}\). Thay hoành độ vào hàm số ta được tung độ y. Cách giải: Hoành độ của đỉnh là \(x = \frac{{ - b}}{{2a}} = \frac{4}{{2.1}} = 2\). Thay x = 2 vào hàm số ta được y = 5 Chọn B. Câu 21 (NB): Phương pháp: Dùng định lý sin trong tam giác. Cách giải: Chọn B. Câu 22 (TH): Phương pháp: Dùng định lý cosin \({b^2} = {a^2} + {c^2} - 2ac.\cos B\) Cách giải: \({b^2} = {a^2} + {c^2} - 2ac.\cos B = {5^2} + {3^2} - 2.3.8.\cos 60 = 19 \Rightarrow b = \sqrt {19} \) Chọn D. Câu 23 (VD): Phương pháp: Chia hình thoi thành 2 tam giác bằng nhau và áp dụng công thức diện tích tam giác. Cách giải: \({S_{\Delta ABD}} = \frac{1}{2}.AB.AD.\sin A = \frac{1}{2}.a.a.\sin 30 = \frac{{{a^2}}}{4}\) Chọn A. Câu 24 (VD): Phương pháp: Chia cả tử và mẫu của phân thức cho cos x để xuất hiện tan x. Cách giải: \(E = \frac{{2\cos \alpha - 3\sin \alpha }}{{3\cos \alpha - \sin \alpha }} = \frac{{2.\frac{{\cos \alpha }}{{\cos \alpha }} - 3.\frac{{\sin \alpha }}{{\cos \alpha }}}}{{3.\frac{{\cos \alpha }}{{\cos \alpha }} - \frac{{\sin \alpha }}{{\cos \alpha }}}} = \frac{{2 - 3\tan x}}{{3 - \tan x}} = \frac{{17}}{8}\) Chọn C. Câu 25 (TH): Phương pháp: Dùng quy tắc cộng, quy tắc trừ và quy tắc hình bình hành. Cách giải: Theo quy tắc cộng \(\overrightarrow {MP} + \overrightarrow {NM} = \overrightarrow {NM} + \overrightarrow {MP} = \overrightarrow {NP} \) Chọn B. Câu 26 (NB): Phương pháp: Hai vecto đối nhau khi chúng cùng phương và ngược hướng. Cách giải: Chọn B. Câu 27 (TH): Phương pháp: Hai veto bằng nhau khi chúng cùng phương và cùng hướng Phân biệt giữa vecto và độ dài vecto Cách giải: \(\overrightarrow {AB} = \overrightarrow {AC} \)sai do 2 vecto này không cùng phương Chọn A. Câu 28 (TH): Phương pháp: Dùng tính chất trọng tâm tam giác Cách giải: Gọi \(G\) là trọng tâm tam giác \(ABC\). Ta có \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \vec 0 \Rightarrow M \equiv G\). Chọn B. Câu 29 (TH): Phương pháp: Dùng công thức tích vô hướng của 2 vecto Cách giải: \(\overrightarrow {AC} .\overrightarrow {CB} = \left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {CB} } \right|\cos \left( {\overrightarrow {AC} ,\,\overrightarrow {CB} } \right) = a.a.\cos 120 = \frac{{ - {a^2}}}{2}\) Chọn D. Câu 30 (VD): Phương pháp: Dùng công thức tích vô hướng của 2 vecto Cách giải:
\(B{D^2} = A{B^2} + A{C^2} = {5^2} + {8^2} = 89 \Rightarrow BD = \sqrt {89} \) \(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {BD} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {BD} } \right|.\cos \left( {\overrightarrow {AB} ,\,\overrightarrow {BD} } \right) = 8.\sqrt {89} .\cos BAE\\ = 8.\sqrt {89} .\frac{{A{B^2} + A{E^2} - B{E^2}}}{{2AB.AE}} = 8.\sqrt {89} .\frac{{{8^2} + 89 - 125}}{{2.8.\sqrt {89} }} = 14\end{array}\) Chọn C. II. Phần tự luận (4 điểm) Câu 1 (TH): Phương pháp: Dùng định nghĩa các phép toán trên tập hợp. Cách giải: a. \(S = \left\{ {1;2;3;4} \right\},T = \left\{ {2;4;6} \right\}\) \(S \cap T = \left\{ {2,4} \right\},\,S \cup T = \left\{ {1,2,3,4,6} \right\},\,\,S\backslash T = \left\{ {1,3} \right\}\) b. \(\mathop C\nolimits_\mathbb{R} B = \mathbb{R}\backslash \left[ {4 - 3m; + \infty } \right) = \left( { - \infty ,\,4 - 3m} \right)\) Để \(\mathop C\nolimits_\mathbb{R} B \subset A\) tức là \(\left( { - \infty ,\,4 - 3m} \right) \subset \left( { - \infty ;2023} \right) \Leftrightarrow 4 - 3m \le 2023 \Leftrightarrow m \ge 673\). Câu 2 (VD): Phương pháp: Dùng các hệ thức lượng trong tam giác. Cách giải: \(BC = DC.\tan 23,{6^0} = 200.\tan 23,{6^0} \approx 87,378\)m \(\angle ADC = \angle ADB + \angle BDC = 15,9 + 23,6 = 39,5\) \(AC = DC.\tan ADC = 200.\tan 39,{5^0} = 164,867m\) Vậy chiều cao tháp là AB = AC – BC = 164,867 – 87,378 =77,489 m Câu 3 (TH): Phương pháp: Xác định đỉnh, trục đối xứng, các điểm mà đồ thị đi qua Cách giải: a. Vì \(y = {x^2} - 2x + 2m - 1\) đi qua A (2, 1) nên thay x = 2, y = 1 ta có 1 = 4 – 4 +2m -1. Suy ra m=1 Vậy hàm số là \(y = {x^2} - 2x + 1\) b. Đỉnh S của (P) có hoành độ \(x = \frac{{ - \left( { - 2} \right)}}{{2.1}} = 1\). Suy ra tung độ đỉnh S là y = 1 – 2 + 1 = 0. Vậy S (1, 0), trục đối xứng x = 1 Bảng biến thiên:
Đồ thị:
Đồ thị hàm số là 1 parabol có bề lõm quay lên, có đỉnh S (1,0), trục đối xứng x = 1, cắt trục tung tại S, có giá trị nhỏ nhât bằng 0 Câu 4 (VD): Phương pháp: Dùng quy tắc cộng, chèn điểm, các vecto bằng nhau,.. Cách giải: a. \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {BA} + \overrightarrow {MC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {MC} = \overrightarrow {AB} \) Suy ra MABC là hình bình hành. b. Ta có \(\left| {\overrightarrow {MB} - \overrightarrow {MC} } \right| = \left| {\overrightarrow {BM} - \overrightarrow {BA} } \right| \Leftrightarrow \left| {\overrightarrow {CB} } \right| = \left| {\overrightarrow {AM} } \right| \Rightarrow AM = BC\) Mà \(A,\;B,\;C\) cố định nên tập hợp điểm \(M\) là đường tròn tâm \(A\), bán kính \(BC\). Đề 3 Phần I: Trắc nghiệm (6 điểm – 30 câu). Câu 1: Trong các câu sau, có bao nhiêu câu là mệnh đề? a) Cố lên, sắp đói rồi! b) Số 15 là số nguyên tố. c) Tổng các góc của một tam giác là \(180^\circ .\) d) \(x\) là số nguyên dương. A. 3 B. 2 C. 4 D. 1 Câu 2: Trong các mệnh đề dưới đây mệnh đề nào đúng? A. \(\forall {\rm{ x}} \in \mathbb{R}{\rm{, }}{{\rm{x}}^2} + 1 > 0\) B. \(\forall x \in \mathbb{R},{\rm{ }}{x^2} > x\) C. \(\exists {\rm{ r}} \in \mathbb{Q},{\rm{ }}{{\rm{r}}^2} = 7\) D. \(\forall {\rm{ n}} \in \mathbb{N}{\rm{, n}} + 4\) chia hết cho 4. Câu 3: Cho \(A = \left\{ {a;b;c} \right\}\) và \(B = \left\{ {a;c;d;e} \right\}\). Hãy chọn khẳng định đúng. A. \(A \cap B = \left\{ {a;c} \right\}\) B. \(A \cap B = \left\{ {a;b;c;d;e} \right\}\) C. \(A \cap B = \left\{ b \right\}\) D. \(A \cap B = \left\{ {d;e} \right\}\) Câu 4: Cho \(A\), \(B\) là hai tập hợp bất kì. Phần gạch sọc trong hình vẽ bên dưới là tập hợp nào sau đây?
A. \(A \cup B\) B. \(B\backslash A\) C. \(A\backslash B\) D. \(A \cap B\) Câu 5: Trong số \(50\) học sinh của lớp 10A có \(15\) bạn được xếp loại học lực giỏi, \(25\) bạn được xếp loại hạnh kiểm tốt, trong đó có \(10\) bạn vừa được xếp loại học lực giỏi vừa được xếp loại hạnh kiểm tốt. Khi đó, lớp 10A có bao nhiêu bạn được khen thưởng, biết rằng muốn được khen thưởng bạn đó phải có học lực giỏi hoặc hạnh kiểm tốt. A. 20 B. 30 C. 35 D. 25 Câu 6: Cho \(A = \left( { - \infty ;m + 1} \right]\); \(B = \left( { - 1; + \infty } \right)\). Điều kiện để \(\left( {A \cup B} \right) = \mathbb{R}\) là A. \(m > - 1\) B. \(m \ge - 2\) C. \(m \ge 0\) D. \(m > - 2\) Câu 7: Trong các cặp số sau đây, cặp nào là nghiệm của bất phương trình \(2x + 3y < 1\) A. \(\left( { - 2;1} \right)\) B. \(\left( {3; - 7} \right)\) C. \(\left( {0;1} \right)\) D. \(\left( {0;0} \right)\) Câu 7: Hình dưới đây là hình biểu diễn của bất phương trình nào (miền nghiệm là miền màu xanh)?
A. \(x - 3y > 1\) B. \(x - 3y < 1\) C. \(4x - 3y < 1\) D. \(4x - 3y > 1\) Câu 8: Miền nghiệm của bất phương trình: \(3x + 2\left( {y + 3} \right) \ge 4\left( {x + 1} \right) - y + 3\) là mặt phẳng chứa điểm. A. (3,0) B. (3,1) C. (2,1) D. (0,0) Câu 9: Công việc nào sau đây không phụ thuộc vào các công việc của môn thống kê ? A. Thu thập số liệu. B. Trình bày số liệu. C. Phân tích và xử lý số liệu. D. Ra quyết định dựa trên số liệu Câu 10: Cho mẫu số liệu thống kê \(\left\{ {6,5,5,2,9,10,8} \right\}\).Mốt của mẫu số liệu trên bằng bao nhiêu? A. 5 B. 10 C. 2 D. 6 Câu 11: Cho dãy số liệu thống kê: 48,36,33,38,32,48,42,33,39. Khi đó số trung vị là A. 32 B. 36 C. 38 D. 40 Câu 12: Cho dãy số liệu thống kê: \(\left\{ {8,10,12,14,16} \right\}\).Số trung bình cộng của dãy số liệu thống kê đã cho là A. 12 B. 14 C. 13 D. 12.5 Câu 13: Điều tra về số học sinh của 1 trường THPT có 1120 học sinh khối 10, 1075 học sinh khối 11 và 900 học sinh khối 12. Hỏi kích thước mấu là bao nhiêu? A. 1220 B. 1075 C. 900 D. 3095 Câu 14: Chọn câu đúng trong bốn phương án trả lời đúng sau đây: độ lệch chuẩn là: A. Bình phương của phương sai. B. Một nửa của phương sai. C. Căn bậc hai phương sai. D. Không phải các công thức trên. Câu 15: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \frac{{x + 1}}{{\left( {x + 1} \right)\left( {{x^2} + 3x + 4} \right)}}.\) A. \({\rm{D}} = \mathbb{R}\backslash \left\{ 1 \right\}.\) B. \({\rm{D}} = \left\{ { - 1} \right\}.\) C. \({\rm{D}} = \mathbb{R}\backslash \left\{ { - 1} \right\}.\) D. \({\rm{D}} = \mathbb{R}.\) Câu 16: Điểm nào sau đây không thuộc đồ thị hàm số \(y = \frac{{\sqrt {{x^2} - 4x + 4} }}{x}.\) A. \(A\left( {2;0} \right).\) B. \(B\left( {3;\frac{1}{3}} \right).\) C. \(C\left( {1; - 1} \right).\) D. \(D\left( { - 1; - 3} \right).\) Câu 17: Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{2\sqrt {x + 2} - 3}}{{x - 1}}}&{x \ge 2}\\{{x^2}{\rm{ + 1}}}&{x < 2}\end{array}} \right..\) Tính \(P = f\left( 2 \right) + f\left( { - 2} \right).\) A. \(P = \frac{8}{3}.\) B. \(P = 4.\) C. \(P = 6.\) D. \(P = \frac{5}{3}.\) Câu 18: Xét tính đồng biến, nghịch biến của hàm số \(f\left( x \right) = {x^2} - 4x + 5\) trên khoảng \(\left( { - \infty ;2} \right)\) và trên khoảng \(\left( {2; + \infty } \right)\). Khẳng định nào sau đây đúng? A. Hàm số nghịch biến trên \(\left( { - \infty ;2} \right)\), đồng biến trên \(\left( {2; + \infty } \right)\). B. Hàm số đồng biến trên \(\left( { - \infty ;2} \right)\), nghịch biến trên \(\left( {2; + \infty } \right)\). C. Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\). D. Hàm số đồng biến trên các khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\). Câu 19: Cho hàm số bậc hai \(y = {x^2} + x - 1\). Trục đối xứng của đồ thị hàm số là: A. \(x = \frac{{ - 1}}{2}\) B. \(x = \frac{1}{2}\) C. \(y = \frac{{ - 1}}{2}\) D. \(y = \frac{{ - 1}}{2}\) Câu 20: Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = \sqrt {x - m} + \sqrt {2x - m - 1} \) xác định trên \(\left( {0; + \infty } \right).\) A. \(m \le 0.\) B. \(m \ge 1.\) C. \(m \le 1.\) D. \(m \le - 1.\) Câu 21: Tam giác \(ABC\) có \(AB = 5,\;BC = 7,\;CA = 8\). Số đo góc \(\widehat A\) bằng: A. \(30^\circ .\) B. \(45^\circ .\) C. \(60^\circ .\) D. \(90^\circ .\) Câu 22: Tam giác \(ABC\) có \(AB = \sqrt 2 ,\;AC = \sqrt 3 \) và \(\widehat C = 45^\circ \). Tính độ dài cạnh \(BC\). A. \(BC = \sqrt 5 .\) B. \(BC = \frac{{\sqrt 6 + \sqrt 2 }}{2}.\) C. \(BC = \frac{{\sqrt 6 - \sqrt 2 }}{2}.\) D. \(BC = \sqrt 6 .\) Câu 23: Tam giác \(ABC\) có \(BC = 21{\rm{cm}},{\rm{ }}CA = 17{\rm{cm}},{\rm{ }}AB = 10{\rm{cm}}\). Tính bán kính \(R\) của đường tròn ngoại tiếp tam giác \(ABC\). A. \(R = \frac{{85}}{2}{\rm{cm}}\) B. \(R = \frac{7}{4}{\rm{cm}}\) C. \(R = \frac{{85}}{8}{\rm{cm}}\) D. \(R = \frac{7}{2}{\rm{cm}}\) Câu 24: Tam giác \(ABC\) vuông tại \(A\) có \(AB = 6\)cm, \(BC = 10\)cm. Tính bán kính \(r\) của đường tròn nội tiếp tam giác đã cho. A. \(r = 1\) cm. B. \(r = \sqrt 2 \) cm C. \(r = 2\) cm. D. \(r = 3\) cm. Câu 25: Cho hai điểm \(A\) và \(B\) phân biệt. Điều kiện để \(I\) là trung điểm \(AB\) là: A. \(IA = IB.\) B. \(\overrightarrow {IA} = \overrightarrow {IB} .\) C. \(\overrightarrow {IA} = - \overrightarrow {IB} .\) D. \(\overrightarrow {AI} = \overrightarrow {BI} .\) Câu 26: Cho \(\overrightarrow {AB} = - \overrightarrow {CD} \). Khẳng định nào sau đây đúng? A. \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng hướng. B. \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng độ dài. C. \(ABCD\) là hình bình hành. D. \(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow 0 .\) Câu 27: Cho hình bình hành \(ABCD\) có \(O\) là giao điểm của hai đường chéo. Hỏi vectơ \(\left( {\overrightarrow {AO} - \overrightarrow {DO} } \right)\) bằng vectơ nào trong các vectơ sau? A. \(\overrightarrow {BA} .\) B. \(\overrightarrow {BC} .\) C. \(\overrightarrow {DC} .\) D. \(\overrightarrow {AC} .\) Câu 28: Cho hình vuông \(ABCD\) cạnh \(a.\) Tính \(\overrightarrow {AB} .\overrightarrow {AC} .\) A. \(\overrightarrow {AB} .\overrightarrow {AC} = {a^2}.\) B. \(\overrightarrow {AB} .\overrightarrow {AC} = {a^2}\sqrt 2 .\) C. \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{{\sqrt 2 }}{2}{a^2}.\) D. \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}{a^2}.\) Câu 29: Cho hình thoi \(ABCD\) có \(AC = 8\) và \(BD = 6.\) Tính \(\overrightarrow {AB} .\overrightarrow {AC} .\) A. \(\overrightarrow {AB} .\overrightarrow {AC} = 24.\) B. \(\overrightarrow {AB} .\overrightarrow {AC} = 26.\) C. \(\overrightarrow {AB} .\overrightarrow {AC} = 28.\) D. \(\overrightarrow {AB} .\overrightarrow {AC} = 32.\) Câu 30: Cho hình bình hành \(ABCD\) có \(AB = 8\,\,{\rm{cm, }}AD = 12\,\,{\rm{cm}}\), góc \(\widehat {ABC}\) nhọn và diện tích bằng \(54\,\,{\rm{c}}{{\rm{m}}^2}.\) Tính \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right).\) A. \(\frac{{2\sqrt 7 }}{{16}}\) B. \( - \frac{{2\sqrt 7 }}{{16}}\) C. \(\frac{{5\sqrt 7 }}{{16}}\) D. \( - \frac{{5\sqrt 7 }}{{16}}\) Phần II. Tự luận (4 điểm): Câu 1: a. Cho hai tập hợp \(A = \left[ { - 2;3} \right]\) và \(B = \left( {1; + \infty } \right)\). Tìm \(A \cap B\). b. Cho \(m\) là một tham số thực và hai tập hợp \(A = \left[ {1 - 2m;\,m + 3} \right]\), \(B = \left\{ {x \in \mathbb{R}|\,x \ge 8 - 5m} \right\}\). Tìm các giá trị \(m\) để \(A \cap B = \emptyset \). Câu 2: Cho hàm số \(y = {x^2} - 2\left( {m + 1} \right)x + 3m - 3\)có đồ thị (P). Biết hàm số đi qua M (3, 0) a. Xác định hàm số b. Vẽ bảng biến thiên, vẽ đồ thị (P). Câu 3: Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng \(CD = 60{\rm{m}}\), giả sử chiều cao của giác kế là \(OC = 1{\rm{m}}\). Quay thanh giác kế sao cho khi ngắm theo thanh ta nhình thấy đỉnh \(A\) của tháp. Đọc trên giác kế số đo của góc \(\widehat {AOB} = {60^0}\). Tính chiều cao của tháp, làm tròn kết quả đến hàng phần trăm.
Câu 4: Tìm tập các hợp điểm \(M\) thỏa mãn \(\overrightarrow {MB} \left( {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right) = 0\) với \(A,{\rm{ }}B,{\rm{ }}C\) là ba đỉnh của tam giác. -----HẾT---- Giải đề 3 HƯỚNG DẪN GIẢI CHI TIẾT Phần I: Trắc nghiệm (6 điểm)
Câu 1 (NB): Phương pháp: Mệnh đề có tính đúng hoặc sai. Cách giải: b, c là mệnh đề Chọn B. Câu 2 (NB): Phương pháp: Tìm giá trị để mệnh đề đúng hoặc sai để khẳng định. Cách giải: A: Đúng vì \({x^2} \ge 0\) nên \({x^2} + 1 > 0\). Chọn A. Câu 3 (TH): Phương pháp: Dùng định nghĩa các phép toán trên tập hợp. Cách giải: A. Đúng vì \(\left\{ {a;c} \right\}\) vừa thuộc tập A, vừa thuộc tập B. B. HS nhầm là vừa thuộc A hoặc B. C. HS nhầm là thuộc A và không thuộc B. D. HS nhầm là thuộc B và không thuộc A. Chọn A. Câu 4 (NB): Phương pháp: Cách giải: Theo biểu đồ Ven thì phần gạch sọc trong hình vẽ là tập hợp \(A \cap B\). Chọn D. Câu 5 (TH): Phương pháp: Tính số học sinh chỉ xếp loại giỏi, chỉ xếp hạnh kiểm tốt. Từ đó tính số học sinh có học lực giỏi hoặc hạnh kiểm tốt. Cách giải: Từ giả thiết bài toán, ta có: Số các học sinh chỉ có học lực giỏi là: \(15 - 10 = 5\). Số các học sinh chỉ được xếp loại hạnh kiểm tốt là: \(25 - 10 = 15\). Tổng số học sinh có học lực giỏi hoặc hạnh kiểm tốt là \(10 + 5 + 15 = 30\). Vậy có \(30\) học sinh được khen thưởng. Chọn B. Câu 6 (VD): Phương pháp: Dùng định nghĩa phép toán trên tập hợp hoặc vẽ tia số. Cách giải: Ta có: \(\left( {A \cup B} \right) = \mathbb{R}\)\( \Leftrightarrow - 1 \le m + 1 \Leftrightarrow m \ge - 2\). Chọn C. Câu 7 (NB): Phương pháp: Thay tọa độ x, y vào bât phương trình và kiểm tra tính đúng sai Cách giải: Vì 2.0+3.0 = 0 Chọn D. Câu 7 (TH): Phương pháp: Lấy điểm bất kì thuộc hoặc không thuộc miền nghiệm để kiểm tra bất phương trình trong đáp án Cách giải: Ta thấy O(0,0) không thuộc miền nghiệm nên loại B,C Đường thẳng qua (1,0) nên đáp án A đúng Chọn A. Câu 8 (TH): Phương pháp: Rút gọn bất phương trình và thay tọa độ các điểm vào bất phương trình để kiểm tra tính đúng sai. Cách giải: \(\begin{array}{l}3x + 2\left( {y + 3} \right) > 4\left( {x + 1} \right) - y + 3\\ \Leftrightarrow 3x + 2y + 6 > 4x + 4 - y + 3\\ \Leftrightarrow - x + 3y > 1\end{array}\) Vì thay x = 2, y = 1 vào bất phương trình ta thấy – 2 + 3.1 =1 nên (2,1) thuộc miền nghiệm Chọn C. Câu 9 (NB): Phương pháp: Cách giải: Ra quyết định dựa trên số liệu không phụ thuộc vào công việc của môn Thống kê. Chọn D. Câu 10 (NB): Phương pháp: Mốt của dấu hiệu là giá trị có tần số lớn nhất. Cách giải: Vì 5 có tần suất là 2, còn 6,2,9,10,8 đều có tần suất là 1 nên mốt của dấu hiệu là 5. Chọn A. Câu 11 (TH): Phương pháp: Lập bảng tần số, sắp xếp các giá trị thống kê theo thứ tự không giảm. Nếu có n (n lẻ) n = 2k+1 giá trị thì số trung vị bằng giá trị thứ k Nếu có n (chẵn) n= 2k giá trị thì số trung vị bằng trung bình cộng 2 giá trị k-1 và k+1. Cách giải:
Vì có 7 giá trị nên trung vị bằng số liệu thứ 4 là 38 Chọn C. Câu 12 (TH): Phương pháp: Số trung bình là \(\overline x = \frac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}\) Cách giải: \(\overline x = \frac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n} = \frac{{8 + 10 + 12 + 14 + 16}}{5} = 12\) Chọn A. Câu 13 (TH): Phương pháp: Kích thước mẫu là số các số liệu thống kê. Cách giải: Kích thước mẫu bằng 1120+1075+900 = 3095 Chọn D. Câu 14 (NB): Phương pháp: Độ lệch chuẩn là căn bậc hai của phương sai. Cách giải: Độ lệch chuẩn là căn bậc hai của phương sai. Chọn C. Câu 15 (TH): Phương pháp: Chú ý không rút gọn biểu thức trước khi tìm tập xác định. Cách giải: Hàm số xác định khi \(\left\{ \begin{array}{l}x + 1 \ne 0\\{x^2} + 3x + 4 \ne 0\end{array} \right. \Leftrightarrow x \ne - 1.\) Vậy tập xác định của hàm số là \({\rm{D}} = \mathbb{R}\backslash \left\{ { - 1} \right\}.\) Chọn C. Câu 16 (TH): Phương pháp: Thay tọa độ từng điểm và kiểm tra. Cách giải: Xét đáp án A, thay \(x = 2\) và \(y = 0\) vào hàm số ta được\(0 = \frac{{\sqrt {{2^2} - 4.2 + 4} }}{2}\): thỏa mãn. Xét đáp án B, thay \(x = 3\) và \(y = \frac{1}{3}\) vào hàm số ta được \(\frac{1}{3} = \frac{{\sqrt {{3^2} - 4.3 + 4} }}{3}\): thỏa mãn. Xét đáp án C, thay \(x = 1\) và \(y = - 1\) vào hàm số ta được \( - 1 = \frac{{\sqrt {{1^2} - 4.1 + 4} }}{1} \Leftrightarrow - 1 = 1\)không thỏa mãn. Chọn C. Câu 17 (TH): Phương pháp: Kiểm tra các giá trị cần tính thuộc điều kiện nào của hàm số trước khi tính. Cách giải: Khi \(x \ge 2\) thì \(f\left( 2 \right) = \frac{{2\sqrt {2 + 2} - 3}}{{2 - 1}} = 1.\) Khi \(x < 2\) thì .\(f\left( { - 2} \right) = {\left( { - 2} \right)^2} + 1 = 5.\). Vậy \(f\left( 2 \right) + f\left( { - 2} \right) = 6.\) Chọn C. Câu 18 (TH): Phương pháp: Tìm đỉnh dồ thị hàm số và vẽ bảng biến thiên. Cách giải: Đỉnh S (2, 1), bề lõm quay lên nên hàm số đồng biến trên \(\left( { - \infty ;2} \right)\)và nghịch biến trên \(\left( {2; + \infty } \right)\). Chọn B. Câu 19 (TH): Phương pháp: Trục đối xứng của hàm số bậc hai là \(x = \frac{{ - b}}{{2a}}\) Cách giải: Trục đối xứng của hàm số bậc hai là \(x = \frac{{ - b}}{{2a}} = \frac{{ - 1}}{{2.1}} = \frac{{ - 1}}{2}\) Chọn A. Câu 20 (VDC): Phương pháp: Tìm tập xác định của hàm số theo m Cho tập hợp tìm được là tập con của \(\left( {0; + \infty } \right).\) Cách giải: Hàm số xác định khi \(\left\{ \begin{array}{l}x - m \ge 0\\2x - m - 1 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge m\\x \ge \frac{{m + 1}}{2}\end{array} \right. & \left( * \right)\). TH1: Nếu \(m \ge \frac{{m + 1}}{2} \Leftrightarrow m \ge 1\) thì \(\left( * \right) \Leftrightarrow x \ge m\). Suy ra tập xác định của hàm số là \({\rm{D}} = \left[ {m; + \infty } \right)\) Khi đó, hàm số xác định trên \(\left( {0; + \infty } \right)\) khi và chỉ khi \(\left( {0; + \infty } \right) \subset \left[ {m; + \infty } \right) \Leftrightarrow m \le 0\).Không thỏa mãn điều kiện \(m \ge 1\). TH2: Nếu \(m \le \frac{{m + 1}}{2} \Leftrightarrow m \le 1\) thì \(\left( * \right) \Leftrightarrow x \ge \frac{{m + 1}}{2}\). Suy ra tập xác định của hàm số là \({\rm{D}} = \left[ {\frac{{m + 1}}{2}; + \infty } \right)\). Khi đó, hàm số xác định trên \(\left( {0; + \infty } \right)\) khi và chỉ khi \(\left( {0; + \infty } \right) \subset \left[ {\frac{{m + 1}}{2}; + \infty } \right)\) \( \Leftrightarrow \frac{{m + 1}}{2} \le 0 \Leftrightarrow m \le - 1\) (Thỏa mãn điều kiện \(m \le 1\)). Vậy \(m \le - 1\) thỏa yêu cầu bài toán. Chọn D. Câu 21 (NB): Phương pháp: Áp dụng định lý cosin \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\) Cách giải: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{8^2} + {5^2} - {7^2}}}{{2.8.5}} = \frac{1}{2} \Rightarrow \angle A = {60^0}\) Chọn C. Câu 22 (TH): Phương pháp: Áp dụng định lý cosin \(\cos C = \frac{{{b^2} + {a^2} - {c^2}}}{{2ab}}\) Cách giải: Theo định lí hàm cosin, ta có \(A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos \widehat C \Rightarrow {\left( {\sqrt 2 } \right)^2} = {\left( {\sqrt 3 } \right)^2} + B{C^2} - 2.\sqrt 3 .BC.\cos 45^\circ \)\( \Rightarrow BC = \frac{{\sqrt 6 + \sqrt 2 }}{2}\) Chọn B. Câu 23 (TH): Phương pháp Áp dụng công thức Herong. Cách giải: Đặt \(p = \frac{{AB + BC + CA}}{2} = 24.\) Áp dụng công thức Hê – rông, ta có \({S_{\Delta ABC}} = \sqrt {p\left( {p - AB} \right)\left( {p - BC} \right)\left( {p - CA} \right)} = \sqrt {24.\left( {24 - 21} \right).\left( {24 - 17} \right).\left( {24 - 10} \right)} = 84\,\,c{m^2}.\) Vậy bán kính cần tìm là \({S_{\Delta ABC}} = \frac{{AB.BC.CA}}{{4R}} \Rightarrow R = \frac{{AB.BC.CA}}{{4.{S_{\Delta ABC}}}} = \frac{{21.17.10}}{{4.84}} = \frac{{85}}{8}\,\,cm.\) Chọn C. Câu 24 (TH): Phương pháp: Dùng công thức \(S = p.r\) Cách giải: Dùng Pitago tính được \(AC = 8\), suy ra \(p = \frac{{AB + BC + CA}}{2} = 12\). Diện tích tam giác vuông \(S = \frac{1}{2}AB.AC = 24\).Lại có Chọn C. Câu 25 (NB): Phương pháp: I là trung điểm của AB thì IA = IB và \(\overrightarrow {IA} \), \(\overrightarrow {IB} \) ngược hướng Cách giải: IA = IB và \(\overrightarrow {IA} \), \(\overrightarrow {IB} \) ngược hướng nên \(\overrightarrow {IA} = - \overrightarrow {IB} .\) Chọn C. Câu 26 (TH): Phương pháp: Dùng định nghĩa hai vecto bằng nhau. Cách giải: Ta có \(\overrightarrow {AB} = - \overrightarrow {CD} = \overrightarrow {DC} \). Do đó: \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) ngược hướng. \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng độ dài. \(ABCD\) là hình bình hành nếu \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) không cùng giá. \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow 0 .\) Chọn B. Câu 27 (NB): Phương pháp: Dùng quy tắc cộng hai veto và hai vecto bằng nhau. Cách giải: \(\overrightarrow {AO} - \overrightarrow {DO} = \overrightarrow {AO} + \overrightarrow {OD} = \overrightarrow {AD} = \overrightarrow {BC} \) Chọn B. Câu 28 (NB): Phương pháp: Tích vô hướng \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos (\overrightarrow a ,\overrightarrow b )\) Cách giải: Ta có \((\overrightarrow {AB} ,\overrightarrow {AC} ) = \widehat {BAC} = {45^0}\) nên \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos {45^0} = a.a.\sqrt 2 .\frac{{\sqrt 2 }}{2} = {a^2}\). Chọn A. Câu 29 (TH): Phương pháp: Tích vô hướng \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos (\overrightarrow a ,\overrightarrow b )\) Cách giải: Gọi giao điểm của AC và BD là O, giả thiết không cho góc, ta phân tích các vectơ theo các vectơ có giá vuông góc với nhau. Ta có \(\overrightarrow {AB} .\overrightarrow {AC} = \left( {\overrightarrow {AO} + \overrightarrow {OB} } \right)\overrightarrow {AC} = \overrightarrow {AO} .\overrightarrow {AC} + \overrightarrow {OB} .\overrightarrow {AC} = \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AC} + 0 = \frac{1}{2}A{C^2} = 32\). Chọn D. Câu 30 (VD): Phương pháp: Tích vô hướng \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos (\overrightarrow a ,\overrightarrow b )\) Cách giải: Ta có \({S_{ABCD}} = 2{S_{ABC}} = 54 \Leftrightarrow {S_{ABC}} = 27c{m^2}\). Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}.AB.BC.\sin \widehat {ABC} = \frac{1}{2}.AB.AD.\sin \widehat {ABC} \Rightarrow \sin \widehat {ABC} = \frac{{2{S_{ABC}}}}{{AB.AD}} = \frac{{2.27}}{{8.12}} = \frac{9}{{12}}\) \( \Rightarrow \cos \widehat {ABC} = \sqrt {1 - {{\sin }^2}\widehat {ABC}} = \frac{{5\sqrt 7 }}{{16}}\) Mặt khác góc giữa hai vecto \(\overrightarrow {AB} ,\overrightarrow {BC} \) là góc ngoài góc \(\widehat {ABC}\). Suy ra \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \cos \left( {{{180}^0} - \widehat {ABC}} \right) = \cos \widehat {ABC} = \frac{{ - 5\sqrt 7 }}{{16}}\). Chọn D. Phần II: Tự luận (4 điểm) Câu 1 (TH): Phương pháp: Dùng định nghĩa hoặc biểu diễn trên tia số. Cách giải: a. Biểu diễn trên trục số ta được:
b. Ta có \(A = \left[ {1 - 2m;\,m + 3} \right]\), \(B = \left[ {8 - 5m;\, + \infty } \right)\). \(A \cap B = \emptyset \) \( \Leftrightarrow \) \(\left\{ \begin{array}{l}m + 3 < 8 - 5m\\1 - 2m \le m + 3\end{array} \right.\) \( \Leftrightarrow \) \(\left\{ \begin{array}{l}6m < 5\\3m \ge - 2\end{array} \right.\) \( \Leftrightarrow \) \(\left\{ \begin{array}{l}m < \frac{5}{6}\\m \ge - \frac{2}{3}\end{array} \right.\) \( \Leftrightarrow \) \( - \frac{2}{3} \le m < \frac{5}{6}\). Câu 2 (TH): Phương pháp: Xác định đỉnh, trục đối xứng, các điểm mà đồ thị đi qua Cách giải: a. Vì \(y = {x^2} - 2\left( {m + 1} \right)x + 3m - 3\) đi qua M (3, 0) nên thay x = 3, y = 0 ta có 0 = 9 – 2(m + 1).3 + 3m - 3. Suy ra 9 – 6m – 6 + 3m – 3 = 0. Suy ra m = 0. Vậy hàm số là \(y = {x^2} - 2x - 3\) b. Đỉnh S của (P) có hoành độ \(x = \frac{{ - \left( { - 2} \right)}}{{2.1}} = 1\). Suy ra tung độ đỉnh S là y = 1 – 2 - 3 = - 4. Vậy S (1, - 4), trục đối xứng x = 1 Bảng biến thiên:
Đồ thị:
Đồ thị hàm số là 1 parabol có bề lõm quay lên, có đỉnh S (1,-4), trục đối xứng x = 1, cắt trục tung tại (0, -3), có giá trị nhỏ nhất bằng 0 Câu 3 (TH): Phương pháp: Dùng giá trị lượng giác trong tam giác vuông. Cách giải: Xét tam giác ABO vuông tại B. Khi đó \(AB = OB.\tan {60^0} = 60.\tan {60^0} = 60\sqrt 3 \)m Ta có BD = OC =1 m. Vậy chiều cao của tháp là AB + BD = \(60\sqrt 3 + 1 \approx 104,92\)m Câu 4 (TH): Phương pháp: Tính chất trọng tâm tam giác, chứng minh \(MB \bot MG\). Cách giải: Gọi G là trọng tâm tam giác ABC. Suy ra \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \) Ta có \(\overrightarrow {MB} \left( {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right) = 0 \Rightarrow \overrightarrow {MB} .3\overrightarrow {MG} = 0 \Leftrightarrow \overrightarrow {MB} .\overrightarrow {MG} = 0 \Rightarrow MB \bot MG\) Chứng tỏ \(MB \bot MG\) hay M nhìn đoạn BG dưới một góc vuông nên tập hợp các điểm M là đường tròn đường kính BG. Đề 4 I. Phần trắc nghiệm (6 điểm – 30 câu) Câu 1: Cho mệnh đề chứa biến với\(x\) là số thực. Mệnh đề nào sau đây là đúng: A. \(P\left( 3 \right)\). B. \(P\left( 4 \right)\). C. \(P\left( 1 \right)\). D. \(P\left( 5 \right)\). Câu 2: Cho mệnh đề “\(\forall x \in R,{x^2} - x + 7 < 0\)”. Hỏi mệnh đề nào là mệnh đề phủ định của mệnh đề trên? A. \(\exists x \in R,{x^2} - x + 7 \ge 0\). B. \(\forall x \in R,{x^2} - x + 7 > 0\). C. \(\forall x \in R,{x^2} - x + 7 < 0\) . D. \(\cancel{\exists }x \in R,{x^2} - x + 7 < 0\). Câu 3: Cho hai tập hợp \(A = \left\{ {1;2;3} \right\}\) và \(B = \left\{ {1;2;3;4;5} \right\}.\) Có tất cả bao nhiêu tập \(X\) thỏa \(A \subset X \subset B?\) A. \(4.\) B. \(5.\) C. \(6.\) D. \(8.\) Câu 4: Hãy liệt kê các phần tử của tập \(X = \left\{ {x \in \mathbb{Q}\left| {\left( {{x^2} - x - 6} \right)\left( {{x^2} - 5} \right) = 0} \right.} \right\}.\) A. \(X = \left\{ {\sqrt 5 ;3} \right\}.\) B. \(X = \left\{ { - \sqrt 5 ; - 2;\sqrt 5 ;3} \right\}.\) C. \(X = \left\{ { - 2;3} \right\}.\) D. \(X = \left\{ { - \sqrt 5 ;\sqrt 5 } \right\}.\) Câu 5: Cho hai tập hợp \(A = \left\{ {0;1;2;3;4} \right\},\;B = \left\{ {2;3;4;5;6} \right\}\). Tìm \(X = \left( {A\backslash B} \right) \cap \left( {B\backslash A} \right).\) A. \(X = \left\{ {0;1;5;6} \right\}.\) B. \(X = \left\{ {1;2} \right\}.\) C. \(X = \left\{ 5 \right\}.\) D. \(X = \emptyset .\) Câu 6: Biểu diễn trên trục số các tập hợp \(\left[ { - 7,3} \right]\backslash \left[ { - 4,0} \right]\) là hình nào dưới đây. A. B. C. D. Câu 7: Miền nghiệm của bất phương trình: \(3x + 2\left( {y + 3} \right) > 4\left( {x + 1} \right) - y + 3\) là nửa mặt phẳng chứa điểm: A. \(\left( {3;0} \right).\) B. \(\left( {3;1} \right).\) C. \(\left( {2;1} \right).\) D. \(\left( {0;0} \right).\) Câu 8: Cho hệ bất phương trình \(\left\{ \begin{array}{l}x + 3y - 2 \ge 0\\2x + y + 1 \le 0\end{array} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình? A. \(M\left( {0;1} \right).\) B. \(N\left( {-1;1} \right).\) C. \(P\left( {1;3} \right).\) D. \(Q\left( {-1;0} \right).\) Câu 9: Tiền thưởng (triệu đồng) của cán bộ và nhân viên trong một công ty được cho ở bảng dưới đây:
Tìm Mốt \({M_0}\)? A. \({M_0} = 4\) B. \({M_0} = 15\) C. \({M_0} = 5\) D. \({M_0} = 11\) Câu 10: Thống kê điểm thi môn Ngữ văn trong một kì thi của 380 em học sinh. Người ta thấy có 10 bài được điểm 8. Hỏi tần suất có giá trị \({x_i} = 8\) là bao nhiêu? (kết quả làm tròn đến 2 chữ số thập phân) A. 2,63% B. 2,11% C. 2,10% D. 4,74% Câu 11: Tiền thưởng (triệu đồng) của cán bộ và nhân viên trong một công ty được cho ở bảng dưới đây:
Tính tiền thưởng trung bình: A. 3725000 đồng B. 3745000 đồng C. 3715000 đồng D. 3625000 đồng Câu 12: Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là: A. Độ lệch chuẩn B. Số trung bình C. Mốt D. Số trung vị Câu 13: Cho mẫu số liệu thống kê \(6;4;4;1;9;10;7\) . Số liệu trung vị của mẫu số liệu thống kê trên là: A. 1 B. 6 C. 4 D. 10 Câu 14: Có 100 học sinh tham dự kì thi HSG Toán (thang điểm 20 điểm) kết quả như sau:
Tính độ lệch chuẩn (kết quả làm tròn đến hai chữ số thập phân). A. 4,67 B. 2,16 C. 4,70 D. 2,17 Câu 15: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \frac{{{x^2} + 1}}{{{x^2} + 3x - 4}}.\) A. \({\rm{D}} = \left\{ {1; - 4} \right\}.\) B. \({\rm{D}} = \mathbb{R}\backslash \left\{ {1; - 4} \right\}.\) C. \({\rm{D}} = \mathbb{R}\backslash \left\{ {1;4} \right\}.\) D. \({\rm{D}} = \mathbb{R}.\) Câu 16: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \frac{{\sqrt {6 - 3x} + \sqrt {x + 2} }}{{5x}}.\) A. \({\rm{D}} = \left[ { - 2;2} \right].\) B. \({\rm{D}} = \left( { - 2;2} \right)\backslash \left\{ 0 \right\}.\) C. \({\rm{D}} = \left[ { - 2;2} \right]\backslash \left\{ 0 \right\}.\) D. \({\rm{D}} = \mathbb{R}.\) Câu 17: Cho hàm số \(f\left( x \right) = 4 - 3x\). Khẳng định nào sau đây đúng? A. Hàm số đồng biến trên \(\left( { - \infty ;\frac{4}{3}} \right)\). B. Hàm số nghịch biến trên \(\left( {\frac{4}{3}; + \infty } \right)\). C. Hàm số đồng biến trên \(\mathbb{R}\). D. Hàm số đồng biến trên \(\left( {\frac{3}{4}; + \infty } \right)\). Câu 18: Cho hàm số \(y = \frac{{\sqrt {x - 2} - 2}}{{x - 6}}\). Điểm nào sau đây thuộc đồ thị hàm số: A. \((6;0)\). B. \((2; - 0,5)\). C. \((2;0,5)\). D. \((0;6)\). Câu 19: Giá trị nhỏ nhất của hàm số \(y = x - 2\sqrt {x - 3} \) là: A. – 2 B. – 1 C. 0 D. 2 Câu 20: Tọa độ đỉnh của parabol \(y = - 2{x^2} - 4x + 6\) là A. \(I\left( { - 1;8} \right)\). B. \(I\left( {1;0} \right)\). C. \(I\left( {2; - 10} \right)\). D. \(I\left( { - 1;6} \right)\). Câu 21: Tính giá trị biểu thức \(P = \sin {30^ \circ }\cos {60^ \circ } + \sin {60^ \circ }\cos {30^ \circ }.\) A. \(P = 1.\) B. \(P = 0.\) C. \(P = \sqrt 3 .\) D. \(P = - \sqrt 3 .\) Câu 22: Tam giác \(ABC\) có \(\widehat B = 60^\circ ,\;\widehat C = 45^\circ \) và \(AB = 5\). Tính độ dài cạnh \(AC\). A. \(AC = \frac{{5\sqrt 6 }}{2}.\) B. \(AC = 5\sqrt 3 .\) C. \(AC = 5\sqrt 2 .\) D. \(AC = 10.\) Câu 23: Tam giác \(ABC\) có \(AB = 4,\;BC = 6,\;AC = 2\sqrt 7 \). Điểm \(M\) thuộc đoạn \(BC\) sao cho \(MC = 2MB\). Tính độ dài cạnh \(AM\). A. \(AM = 4\sqrt 2 .\) B. \(AM = 3.\) C. \(AM = 2\sqrt 3 .\) D. \(AM = 3\sqrt 2 .\) Câu 24: Tam giác ABC có \(\angle A = {45^0},{\mkern 1mu} {\mkern 1mu} c = 6,{\mkern 1mu} {\mkern 1mu} \angle B = {75^0}\). Độ dài bán kính đường tròn ngoại tiếp tam giác bằng: A. \(8\sqrt 3 \) B. \(2\sqrt 3 \) C. \(6\sqrt 3 \) D. \(4\sqrt 3 \) Câu 25: Cho tam giác ABC có trung tuyến BM và trọng tâm \(G\). Đặt \(\overrightarrow {BC} {\rm{\;}} = \vec a,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BA} {\rm{\;}} = b\). Hãy phân tích vectơ \(\overrightarrow {BG} \) theo \(\vec a\) và \(\vec b\). A. \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\) B. \(\overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\vec a + \frac{2}{3}\vec b\) C. \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{2}{3}\vec b\) D. \(\overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\vec a + \frac{1}{3}\vec b\) Câu 26: Cho tam giác \(ABC\) với \(M,\;N,\;P\) lần lượt là trung điểm của \(BC,\;CA,\;AB\). Khẳng định nào sau đây sai? A. \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = \overrightarrow 0 .\) B. \(\overrightarrow {AP} + \overrightarrow {BM} + \overrightarrow {CN} = \overrightarrow 0 .\) C. \(\overrightarrow {MN} + \overrightarrow {NP} + \overrightarrow {PM} = \overrightarrow 0 .\) D. \(\overrightarrow {PB} + \overrightarrow {MC} = \overrightarrow {MP} .\) Câu 27: Gọi \(O\) là tâm hình vuông \(ABCD\). Tính \(\overrightarrow {OB} - \overrightarrow {OC} \). A. \(\overrightarrow {OB} - \overrightarrow {OC} = \overrightarrow {BC} .\) B. \(\overrightarrow {OB} - \overrightarrow {OC} = \overrightarrow {DA} .\) C. \(\overrightarrow {OB} - \overrightarrow {OC} = \overrightarrow {OD} - \overrightarrow {OA} .\) D. \(\overrightarrow {OB} - \overrightarrow {OC} = \overrightarrow {AB} .\) Câu 28: Tam giác \(ABC\) có \(AB = AC = a\) và \(\widehat {BAC} = 120^\circ \). Tính \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|.\) A. \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = a\sqrt 3 .\) B. \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = a.\) C. \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \frac{a}{2}.\) D. \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = 2a.\) Câu 29: Cho hình vuông \(ABCD\) cạnh \(a.\) Tính \(\overrightarrow {AB} .\overrightarrow {AC} .\) A. \(\overrightarrow {AB} .\overrightarrow {AC} = {a^2}.\) B. \(\overrightarrow {AB} .\overrightarrow {AC} = {a^2}\sqrt 2 .\) C. \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{{\sqrt 2 }}{2}{a^2}.\) D. \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}{a^2}.\) Câu 30: Cho hình vuông \(ABCD\) cạnh \(a.\) Tính \(\left| {\overrightarrow {AB} - \overrightarrow {DA} } \right|.\) A. \(\left| {\overrightarrow {AB} - \overrightarrow {DA} } \right| = 0.\) B. \(\left| {\overrightarrow {AB} - \overrightarrow {DA} } \right| = a.\) C. \(\left| {\overrightarrow {AB} - \overrightarrow {DA} } \right| = a\sqrt 2 .\) D. \(\left| {\overrightarrow {AB} - \overrightarrow {DA} } \right| = 2a.\) II. Tự luận (4 điểm) Câu 1: Trong lớp 10C có 40 học sinh trong đó có 20 em thích môn Toán, 18 em thích môn Anh và 12 em không thích môn nào. Tính số học sinh thích cả hai môn Toán và Anh. Câu 2: a. Xác định parabol \(\left( P \right):y = 2{x^2} + bx + c,\) biết rằng \(\left( P \right)\) đi qua điểm \(M\left( {0;4} \right)\) và có trục đối xứng \(x = 1.\) b. Xét sự biến thiên và vẽ đồ thị hàm số trên. Câu 3: Để đo chiều cao ngọn tháp, người ta đánh dấu hai điểm A, B trên mặt đất sao cho ba điểm A, B và chân tháp thẳng hàng; AB = 100 m. Tại A và B người ta xác định được góc nhìn tháp (như hình vẽ) lần lượt là \({63^ \circ }\) và \({48^ \circ }\). Tính chiều cao của tháp.
Câu 4. Cho tam giác ABC. Gọi M là trung điểm của AB và N là điểm trên cạnh AC sao cho NC=2NA. Gọi K là trung điểm của MN. a) Chứng minh rằng: \(\overrightarrow {AK} = \frac{1}{4}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} \) b) Gọi D là trung điểm của BC. Chứng minh rằng: \(\overrightarrow {KD} = \frac{1}{4}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \). ----- HẾT ----- Giải đề 4 HƯỚNG DẪN CHI TIẾT I. Phần trắc nghiệm (6 điểm – 30 câu)
Câu 1 (TH): Cách giải: \(P\left( 3 \right):\) là mệnh đề sai. \(P\left( 4 \right):\) là mệnh đề sai. \(P\left( 1 \right):\) là mệnh đề sai. \(P\left( 5 \right):\) là mệnh đề đúng. Chọn D. Câu 2 (TH): Phương pháp: Phủ định của \(\forall \) là \(\exists \), phủ định của < là \( \ge \) Cách giải: Phủ định của \(\forall x \in R,{x^2} - x + 7 < 0\) là \(\exists x \in R,{x^2} - x + 7 \ge 0\). Chọn A. Câu 3 (NB): Phương pháp: \(X \subset Y \Leftrightarrow \forall x \in X \Rightarrow x \in Y\) Cách giải: Ta có \(A \subset X\) nên \(X\) có ít nhất \(3\) phần tử \(\left\{ {1;2;3} \right\}.\) Ta có \(X \subset B\) nên \(X\) phải \(X\) có nhiều nhất \(5\) phần tử và các phần tử thuộc \(X\) cũng thuộc \(B.\) Do đó các tập \(X\) thỏa mãn là có \(4\) tập thỏa mãn. Chọn A. Câu 4 (TH): Phương pháp: Giải phương trình \(\left( {{x^2} - x - 6} \right)\left( {{x^2} - 5} \right) = 0\) và lấy các nghiệm hữu tỉ. Cách giải: Ta có \(\left( {{x^2} - x - 6} \right)\left( {{x^2} - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} - x - 6 = 0\\{x^2} - 5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3 \in \mathbb{Q}\\x = - 2 \in \mathbb{Q}\\x = \sqrt 5 \notin \mathbb{Q}\\x = - \sqrt 5 \notin \mathbb{Q}\end{array} \right.\). Do đó \(X = \left\{ { - 2;3} \right\}\). Chọn C. Câu 5 (TH): Phương pháp: Áp dụng định nghĩa tìm các phép toán trên tập hợp. Cách giải: Ta có \(\left\{ \begin{array}{l}A\backslash B = \left\{ {0;1} \right\}\\B\backslash A = \left\{ {5;6} \right\}\end{array} \right. \Rightarrow \left( {A\backslash B} \right) \cap \left( {B\backslash A} \right) = \emptyset \). Chọn D. Câu 6 (TH): - Phương pháp: Biểu diễn các tập hợp trên trục số và áp dụng định nghĩa các phép toán trên tập hợp. Cách giải:
\([ - 7;3]{\rm{\backslash }}[ - 4;0] = [ - 7; - 4) \cup (0;3]\) Chọn B. Câu 7 (NB): Phương pháp: Thay tọa độ các điểm vào bất phương trình và kiểm tra tính đúng sai. Cách giải: Ta có \(3x + 2\left( {y + 3} \right) > 4\left( {x + 1} \right) - y + 3\, \Leftrightarrow \, - x + 3y - 1 > 0\). Vì \( - 2 + 3.1 - 1 > 0\) là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ \(B\). Chọn C. Câu 8 (TH): Phương pháp: Thay tọa độ các điểm vào bất phương trình và kiểm tra tính đúng sai Cách giải: Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình. Với \(M\left( {0;1} \right) \Rightarrow \)\(\left\{ \begin{array}{l}0 + 3.1 - 2 \ge 0\\2.0 + 1 + 1 \le 0\end{array} \right.\). Bất phương trình thứ hai sai nên A sai. Với \(N\left( {--1;1} \right) \Rightarrow \)\(\left\{ \begin{array}{l} - 1 + 3.1 - 2 \ge 0\\2.\left( { - 1} \right) + 1 + 1 \le 0\end{array} \right.\): Đúng. Chọn B. Câu 9 (NB): Phương pháp: Mốt là gía trị có tần số lớn nhất trong mẫu. Cách giải: Tiền thưởng 4 triệu đồng được thưởng cho 15 người \( \Rightarrow {M_0} = 4\) Chọn A. Câu 10 (TH): Phương pháp: Tần suất \({f_i}\)của giá trị \({x_i}\) là tỉ số giữa tần số n và kích thước mẫu N có công thức \({f_i} = \frac{n}{N}\). Cách giải: Tần suất \(f = \frac{{10}}{{380}} = \frac{1}{{38}} \approx 2,63\% \) Chọn A. Câu 11 (TH): Phương pháp: Số trung bình là \(\overline x = \frac{{{x_1} + {x_2} + {x_3} + ... + {x_n}}}{n}\) Cách giải: Tiền thưởng trung bình: \(\overline x = \frac{{5.2 + 15.3 + 10.4 + 6.5 + 4.6}}{{40}}\) \(\overline x = 3,725\) (triệu đồng) Chọn A. Câu 12 (TH): Phương pháp: Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt Cách giải: Chọn C. Câu 13 (TH): Phương pháp: Bước 1: Sắp thứ tự các số liệu thống kê thành 1 dãy không giảm (không tăng). Bước 2: + Nếu số phần tử lẻ thì \({M_e}\) là số đứng giữa dãy. + Nếu số phần tử chẵn thì \({M_e}\) là trung bình cộng của 2 số đứng giữa dãy. Cách giải: Sắp thứ tự các số liệu thống kê thành một dãy không giảm là: 1 4 4 6 7 9 10 Vậy số trung vị là \({M_e} = 6\) Chọn B. Câu 14 (TH): Phương pháp: Dùng MTCT để tính Cách giải: + Điểm trung bình của 100 học sinh là: \(\overline x = 15,09\) + Độ lệch chuẩn: \(S = \sqrt \begin{array}{l}\frac{1}{{100}}\left[ {2.{{\left( {9 - 15,09} \right)}^2} + 1.{{\left( {10 - 15,09} \right)}^2}} \right.\\ & \left. { + ... + 3.{{\left( {19 - 15,09} \right)}^2}} \right]\end{array} \) \(S \approx 2,17\) Chọn D. Câu 15 (NB): Phương pháp: Hàm phân thức xác định khi mẫu thức khác 0. Cách giải: Hàm số xác định khi và chỉ khi \({x^2} + 3x - 4 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\x \ne - 4\end{array} \right.\)
Vậy TXĐ của hàm số là \(D = \mathbb{R}\backslash \left\{ {1; - 4} \right\}\). Chọn B. Câu 16 (TH): Phương pháp: Căn bậc 2 xác định khi biểu thức trong căn không âm. Cách giải: ĐKXĐ: \(\left\{ \begin{array}{l}6 - 3x \ge 0\\x + 2 \ge 0\\x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\x \ge - 2\\x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2 \le x \le 2\\x \ne 0\end{array} \right.\). Vậy TXĐ của hàm số là \({\rm{D}} = \left[ { - 2;2} \right]{\rm{\backslash }}\{ 0\} .\). Chọn C. Câu 17 (TH): Cách giải: TXĐ: \({\rm{D}} = \mathbb{R}\). Với mọi \({x_1},{x_2} \in \mathbb{R}\) và \({x_1} < {x_2}\), ta có \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \left( {4 - 3{x_1}} \right) - \left( {4 - 3{x_2}} \right) = - 3\left( {{x_1} - {x_2}} \right) > 0.\) Suy ra \(f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\). Do đó, hàm số nghịch biến trên \(\mathbb{R}\). Mà \(\left( {\frac{4}{3}; + \infty } \right) \subset \mathbb{R}\) nên hàm số cũng nghịch biến trên \(\left( {\frac{4}{3}; + \infty } \right)\). Chọn B. Câu 18 (TH): Phương pháp: Thay tọa độ các điểm ở các đáp án vào hàm số. Điểm nào thỏa mãn hàm số thì sẽ thuộc đồ thị hàm số. Cách giải: Thay \(x = 2\) vào hàm số ta được: \(y = \frac{{\sqrt {2 - 2} - 2}}{{2 - 6}} = \frac{{ - 2}}{{ - 4}} = 0,5\) nên điểm \((2;0,5)\) thuộc đồ thị hàm số. Chọn C. Câu 19 (VD): Phương pháp: Phân tích biêu thức về dạng có hằng đẳng thức Cách giải: \(D = [3; + \infty )\) \(y = x - 2\sqrt {x - 3} = \left( {x - 3 - 2\sqrt {x - 3} + 1} \right) + 2 = {\left( {\sqrt {x - 3} - 1} \right)^2} + 2 \ge 2\) khi x = 4. Chọn D. Câu 20 (NB): Phương pháp: Cho hàm số bậc hai \(y = a{x^2} + bx + c\) \(\left( {a \ne 0} \right)\) có đồ thị \(\left( P \right)\), đỉnh của \(\left( P \right)\) là \(I\left( { - \frac{b}{{2a}};\; - \;\frac{\Delta }{{4a}}} \right)\) Cách giải: Tọa độ đỉnh của parabol \(y = - 2{x^2} - 4x + 6\) là \(\left\{ \begin{array}{l}x = - \frac{{ - 4}}{{2.\left( { - 2} \right)}} = - 1\\y = - 2.{\left( { - 1} \right)^2} - 4.\left( { - 1} \right) + 6 = 8\end{array} \right. \Rightarrow I\left( { - 1;8} \right)\). Chọn A. Câu 21 (NB): Phương pháp: Dùng bảng các giá trị lượng giác đặc biệt. Cách giải: Tra bảng giá trị lượng giác của các góc đặc biệt, ta được \(\sin {30^ \circ } = \cos {60^ \circ } = \frac{1}{2};\sin {60^ \circ } = \cos {30^ \circ } = \frac{{\sqrt 3 }}{2}.\) \( \Rightarrow P = \frac{1}{2}.\frac{1}{2} + \frac{{\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{2} = 1\) Chọn A. Chọn D. Câu 22 (NB): Phương pháp: Dùng định lý cosin \({b^2} = {a^2} + {c^2} - 2ac.\cos B\) Cách giải: Theo định lí hàm sin, ta có \(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} \Leftrightarrow \frac{5}{{\sin {{45}^ \circ }}} = \frac{{AC}}{{\sin {{60}^ \circ }}} \Rightarrow AC = \frac{{5\sqrt 6 }}{2}\) Chọn A. Câu 23 (TH): Phương pháp: Dùng định lý cosin \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\) Cách giải:
Theo định lí hàm cosin, ta có: \(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} = \frac{{{4^2} + {6^2} - {{\left( {2\sqrt 7 } \right)}^2}}}{{2.4.6}} = \frac{1}{2}\) Do \(MC = 2MB \Rightarrow BM = \frac{1}{3}BC = 2\) Theo định lí hàm cosin, ta có \(\begin{array}{l}A{M^2} = A{B^2} + B{M^2} - 2.AB.BM.\cos B\\ = {4^2} + {2^2} - 2.4.2.\frac{1}{2} = 12\\ \Rightarrow AM = 2\sqrt 3 \end{array}\) Chọn C. Câu 24 (TH): Phương pháp: Tính \(\angle C = {180^0} - \left( {\angle A + \angle B} \right)\). Sử dụng định lí sin: \(\frac{c}{{\sin C}} = 2R\). Cách giải: Ta có: \(\angle C = {180^0} - \left( {\angle A + \angle B} \right) = {60^0}\). Áp dụng định lí sin ta có: \(\frac{c}{{\sin C}} = 2R \Rightarrow R = \frac{c}{{2\sin C}} = \frac{6}{{2\sin {{60}^0}}} = 2\sqrt 3 \). Chọn B. Câu 25 (TH): Phương pháp: Áp dụng quy tắc cộng vecto, quy tắc hình bình hành để biểu diễn véctơ. Cách giải:
\(\overrightarrow {BM} {\rm{\;}} = \frac{1}{2}\left( {\overrightarrow {BA} {\rm{\;}} + \overrightarrow {BC} } \right) = \frac{1}{2}\overrightarrow {BA} {\rm{\;}} + \frac{1}{2}\overrightarrow {BC} \) \( \Rightarrow \overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\overrightarrow {BM} {\rm{\;}} = \frac{2}{3} \cdot \left( {\frac{1}{2}\overrightarrow {BA} {\rm{\;}} + \frac{1}{2}\overrightarrow {BC} } \right) = \frac{1}{3}\overrightarrow {BA} {\rm{\;}} + \frac{1}{3}\overrightarrow {BC} \) Mặt khác, \(\overrightarrow {BA} {\rm{\;}} = \vec a,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BC} {\rm{\;}} = \vec b\) nên ta có: \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\) Vậy \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\). Chọn A. Câu 26 (TH): Phương pháp: Dùng quy tắc cộng, trừ hai vecto Cách giải: Xét các đáp án: Đáp án A. Ta có \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = \overrightarrow {AA} = \overrightarrow 0 .\) Đáp án B. Ta có \(\overrightarrow {AP} + \overrightarrow {BM} + \overrightarrow {CN} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {BC} + \frac{1}{2}\overrightarrow {CA} \) \( = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} } \right) = \frac{1}{2}\overrightarrow {AA} = \overrightarrow 0 .\) Đáp án C. Ta có \(\overrightarrow {MN} + \overrightarrow {NP} + \overrightarrow {PM} = \overrightarrow {MM} = \overrightarrow 0 .\) Đáp án D. Ta có \(\overrightarrow {PB} + \overrightarrow {MC} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {BC} = \frac{1}{2}\overrightarrow {AC} = \overrightarrow {AN} = \overrightarrow {PM} = - \overrightarrow {MP} .\) Chọn D. Câu 27 (VD): Phương pháp: Dùng quy tắc cộng, trừ hai vecto Cách giải: Ta có \(\overrightarrow {OB} - \overrightarrow {OC} = \overrightarrow {CB} = \overrightarrow {DA} \). Chọn B. Câu 28 (VD): Phương pháp: Nếu M là trung điểm của AB thì với mọi điểm O là luôn có \(\overrightarrow {OA} + \overrightarrow {OB} = 2\overrightarrow {OM} \) Cách giải: Gọi \(M\) là trung điểm \(BC \Rightarrow AM \bot BC.\) Trong tam giác vuông \(AMB\), ta có \(AM = AB.\sin \widehat {ABM} = a.\sin {30^0} = \frac{a}{2}.\)
Ta có \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {2\overrightarrow {AM} } \right| = 2AM = a.\) Chọn B. Câu 29: Phương pháp: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\,\overrightarrow b } \right)\) Cách giải: Ta có \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC} = {45^ \circ }\) nên \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos {45^ \circ } = a.a\sqrt 2 .\frac{{\sqrt 2 }}{2} = {a^2}\) Chọn A. Câu 30 (TH): Phương pháp: Cách giải: Ta có \(\left| {\overrightarrow {AB} - \overrightarrow {DA} } \right| = \left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right| = AC = a\sqrt 2 .\) Chọn C. II. Phần tự luận (4 điểm) Câu 1 (VD): Phương pháp: Dùng các phép toán trên tập hợp Cách giải: Gọi tập hợp các học sinh thích môn Toán là A. Khi đó n(A)=20 Gọi tập hợp các học sinh thích môn Anh là B. Khi đó n(B)=18 Số học sinh học thích môn Toán hoặc thích môn Anh là \(n\left( {A \cup B} \right)\) là 40 – 12 = 28 học sinh Vậy số học sinh thích môn cả 2 môn Toán, Anh là \(n\left( {A \cap B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cup B} \right) = 20 + 18 - 28 = 10\) Vậy có tất cả 10 học sinh vừa thích môn Toán vừa thích môn Anh. Câu 2 (VD): Phương pháp: a) Hàm số \(y = a{x^2} + bx + c(a \ne 0)\) có trục đối xứng \(x = - \frac{b}{{2a}}\). b) Sự biến thiên
* Vẽ đồ thị + Đỉnh I\(\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\) + Trục đối xứng \(x = - \frac{b}{{2a}}\) + Giao với các trục (nếu có) + Lấy các điểm thuộc đồ thị (đối xứng nhau qua trục đối xứng). Cách giải: a. Hàm số \(\left( P \right):y = 2{x^2} + bx + c,\) có \(a = 2\) Ta có \(M(0;4) \in (P)\) suy ra \(4 = {2.0^2} + b.0 + c \Leftrightarrow c = 4\) Mà (P) có trục đối xứng \(x = 1\). Do đó \( - \frac{b}{{2a}} = 1 \Leftrightarrow b = - 2a = - 2.2 = - 4\) Vậy hàm số có dạng \(y = 2{x^2} - 4x + 4\) b. \(y = 2{x^2} - 4x + 4\) Đỉnh S có tọa độ \(x = - \frac{{ - 4}}{{2.2}} = 1\), \(y = {2.1^2} - 4.1 + 4 = 2\) Vì hàm số có a = 2 > 0 nên ta có bảng biến thiên
Vậy hàm số đồng biến trên \((1; + \infty )\), nghịch biến trên \(( - \infty ;1)\). * Đồ thị: Trong mặt phẳng Oxy đồ thị của \(y = 2{x^2} - 4x + 4\)là parabol (P) có: Đỉnh I (1;2) Trục đối xứng là x = 1 Bề lõm quay lên trên Cắt trục tung tại điểm A(0,4) Lấy điểm B(2;4) đối xứng với A qua trục đối xứng.
Câu 3 (TH): Phương pháp: Áp dụng định lí sin. Cách giải: Gọi D là đỉnh tháp, C là điểm chính giữa của chân tháp. Khi đó chiều cao của tháp là CD.
Ta có: \(\widehat {CAD} = {63^o},\widehat {CBD} = {48^o} \Rightarrow \widehat {DAB} = {180^o} - \widehat {CAD} = {180^o} - {63^o} = {117^o}\) Xét tam giác DAB ta có: \(AB = 100,\widehat A = {117^o},\widehat B = {48^o}\)\( \Rightarrow \widehat {ADB} = {180^ \circ } - {117^ \circ } - {48^ \circ } = {15^ \circ }\) Áp dụng định lí sin ta được: \(\frac{{AB}}{{\sin \widehat {ADB}}} = \frac{{DB}}{{\sin \widehat {DAB}}} \Leftrightarrow \frac{{100}}{{\sin {{15}^ \circ }}} = \frac{{DB}}{{\sin {{117}^ \circ }}}\) \( \Rightarrow DB = \sin {117^ \circ }.\frac{{100}}{{\sin {{15}^ \circ }}}\) Lại có: \(\Delta DCB\) vuông tại C, suy ra \(CD = DB.\sin B\) \( \Leftrightarrow CD = \sin {117^ \circ }.\frac{{100}}{{\sin {{15}^ \circ }}}.\sin {48^ \circ } \approx 256\) Vậy tháp đó cao khoảng 256m. Câu 4 (VD): Phương pháp: Nếu M là trung điểm của AB thì với mọi điểm O ta luôn có \(\overrightarrow {OA} + \overrightarrow {OB} = 2\overrightarrow {OM} \) Cách giải: a) Ta có: \(\overrightarrow {AK} = \frac{1}{2}(\overrightarrow {AM} + \overrightarrow {AN} )\) (vì \(K\) là trung điểm của \(\left. {MN} \right)\) Mà M là trung điểm AB, suy ra \(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} \) Lại có: \(NA = \frac{1}{2}NC \Rightarrow AN = \frac{1}{3}AC \Rightarrow \overrightarrow {AN} = \frac{1}{3}\overrightarrow {AC} \) \( \Rightarrow \overrightarrow {AK} = \frac{1}{2}\left( {\frac{1}{2}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right)\) \( = \frac{1}{4}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} \) b) Ta có: \(\overrightarrow {KD} = \frac{1}{2}(\overrightarrow {KB} + \overrightarrow {KC} )\) (do D là trung điểm BC) \( = \frac{1}{2}(\overrightarrow {KA} + \overrightarrow {AB} + \overrightarrow {KA} + \overrightarrow {AC} ) = \overrightarrow {KA} + \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \) \( = - \overrightarrow {AK} + \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \) \( = - \frac{1}{4}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AC} + \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} = \frac{1}{4}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \) (đpcm) Đề 5 Phần 1: Trắc nghiệm (30 câu – 6 điểm) Câu 1: Câu nào sau đây không phải là mệnh đề? A. Bạn bao nhiêu tuổi? B. Hôm nay là chủ nhật. C. Trái đất hình tròn. D. \(4 \ne 5\) Câu 2: Cho số \(\bar a = 31975421 \pm 150\). Hãy viết số quy tròn của số 31975421. A. 31975400. B. 31976000. C. 31970000. D. 31975000. Câu 3: Cho tam giác ABC có M, N, Q lần lượt là trung điểm của AB, BC, CA. Khi đó vectơ \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BM} {\rm{ \;}} + \overrightarrow {NA} {\rm{ \;}} + \overrightarrow {BQ} \) bằng vectơ nào sau đây? A. \(\overrightarrow {CB} .\) B. \(\overrightarrow {BA} .\) C. \(\vec 0.\) D. \(\overrightarrow {BC} .\) Câu 4: Cho tam giác ABC có AB = 6, AC = 8 và \(\angle BAC = {120^0}\). Độ dài cạnh BC bằng: A. 10. B. \(2\sqrt {13} .\) C. 12. D. \(2\sqrt {37} .\) Câu 5: Cặp số (x;y) nào là sau đây là một nghiệm của bất phương trình x – y + 3 > 0. A. (x;y) = (0;4). B. (x;y) = (2;5). C. (x;y) = (1;3). D. (x;y) = (1;4). Câu 6: Cho hình bình hành ABCD. Nếu viết được \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} {\rm{ \;}} + \overrightarrow {AD} {\rm{ \;}} = k\overrightarrow {AC} \) thì k bằng A. 4. B. 3. C. 2. D. 1. Câu 7: Gọi a, b, c, r, R, S lần lượt là độ dài ba cạnh, bán kính đường tròn nội tiếp, ngoại tiếp và diện tích của tam giác ABC. Khẳng định nào sau đây là đúng A. \(S = p.R\) với \(p = \frac{{a + b + c}}{2}.\) B. \(S = \frac{{abc}}{{4R}}\). C. \(S = \frac{1}{2}\sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) với \(p = \frac{{a + b + c}}{2}.\) D. \(S = \frac{1}{2}ab\cos C\). Câu 8: Tập xác định của hàm số \(y = \sqrt {{x^2} - 3x + 2} + \frac{1}{{\sqrt {x + 3} }}\) là A. \(\left( { - 3; + \infty } \right)\). B. \(\left( { - 3;1} \right] \cup \left[ {2; + \infty } \right)\). C. \(\left( { - 3;1} \right] \cup \left( {2; + \infty } \right)\). D. \(\left( { - 3;1} \right) \cup \left( {2; + \infty } \right)\). Câu 9: Cho hai tập hợp \(P = \left[ { - 4;5} \right)\) và \(Q = \left( { - 3; + \infty } \right)\). Khẳng định nào sau đây là đúng? A. \(P\backslash Q = \left[ { - 4; - 3} \right].\) B. \(P \cap Q = \left( { - 3;5} \right].\) C. \(P \cup Q = \left[ { - 4;5} \right).\) D. \({C_\mathbb{R}}P = \left( { - \infty ; - 4} \right] \cup \left[ {5; + \infty } \right).\) Câu 10: Cho các tập hợp A, B, C được minh họa bằng biểu đồ Ven như hình vẽ. Phần tô màu xám trong hình là biểu diễn của tập hợp nào sau đây?
A. \(A \cap B \cap C.\) B. \(\left( {A\backslash C} \right) \cup \left( {A\backslash B} \right).\) C. \(\left( {A \cup B} \right)\backslash C.\) D. \(\left( {A \cap B} \right)\backslash C.\) Câu 11: Khoảng cách từ điểm A đến điểm B không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm C mà từ đó có thể nhìn được A và B dưới một góc 52016’. Biết CA = 200m, BC = 180m. Tính khoảng cách từ A đến B (làm tròn đến hàng đơn vị).
A. 165m. B. 166m. C. 169m. D. 168m. Câu 12: Biết \(\sin x = \frac{1}{2}\). Giá trị của biểu thức \(P = {\sin ^2}x - {\cos ^2}x\) là A. \(\frac{1}{2}\) B. \( - \frac{1}{2}\) C. \( - \frac{1}{2} + \frac{{\sqrt 3 }}{2}\) D. \( - \frac{1}{2} - \frac{{\sqrt 3 }}{2}\) Câu 13: Cho hàm số \(f\left( x \right) = \frac{4}{{x + 1}}\). Khi đó: A. \(f\left( x \right)\) tăng trên khoảng \(\left( { - \infty ; - 1} \right)\) và giảm trên khoảng \(\left( { - 1; + \infty } \right)\). B. \(f\left( x \right)\) tăng trên hai khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\). C. \(f\left( x \right)\) giảm trên khoảng \(\left( { - \infty ; - 1} \right)\) và giảm trên khoảng \(\left( { - 1; + \infty } \right)\). D. \(f\left( x \right)\) giảm trên hai khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\). Câu 14: Giá trị của biểu thức \(A = {\sin ^2}{51^0} + {\sin ^2}{55^0} + {\sin ^2}{39^0} + {\sin ^2}{35^0}\) là: A. 3. B. 4. C. 1. D. 2. Câu 15: Cho ba lực \(\overrightarrow {{F_1}} {\rm{ \;}} = \overrightarrow {MA} \), \(\overrightarrow {{F_2}} {\rm{ \;}} = \overrightarrow {MB} \), \(\overrightarrow {{F_3}} {\rm{ \;}} = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của \(\overrightarrow {{F_1}} ,{\mkern 1mu} {\mkern 1mu} \overrightarrow {{F_2}} \) đều bằng 100N và \(\angle AMB = {60^0}\). Khi đó cường độ lực \(\overrightarrow {{F_3}} \) là:
A. \(50\sqrt 2 N\). B. \(50\sqrt 3 N\). C. \(25\sqrt 3 N\). D. \(100\sqrt 3 N\). Câu 16: Tọa độ đỉnh của parabol \(y = - 2{x^2} - 4x + 6\) là A. \(I\left( { - 1;8} \right)\). B. \(I\left( {1;0} \right)\). C. \(I\left( {2; - 10} \right)\). D. \(I\left( { - 1;6} \right)\). Câu 17: Trên \(2\) con đường A và B, trạm kiểm soát đã ghi lại tốc độ \(\left( {{\rm{km/h}}} \right)\) của 20 chiếc xe ô tô trên mỗi con đường như sau: Con đường A: \(\begin{array}{*{20}{c}}{60}&{65}&{76}&{68}&{65}&{75}&{80}&{80}&{68}&{60}\\{65}&{90}&{90}&{85}&{65}&{72}&{75}&{76}&{85}&{84}\end{array}\) Con đường B: \(\begin{array}{*{20}{c}}{76}&{64}&{85}&{60}&{70}&{62}&{70}&{55}&{79}&{80}\\{79}&{62}&{55}&{70}&{64}&{76}&{80}&{79}&{55}&{85}\end{array}\) Với bảng số liệu như trên thì chạy xe trên con đường nào sẽ an toàn hơn? A. Con đường A B. Con đường B C. Như nhau D. Không kết luận được Câu 18: Giả sử ta có một mẫu số liệu kích thước \(N\) là \(\left\{ {{x_1};{\mkern 1mu} {\mkern 1mu} {x_2};{\mkern 1mu} {\mkern 1mu} \ldots ;{\mkern 1mu} {\mkern 1mu} {x_N}} \right\}\). Khi đó, phương sai của mẫu số liệu này, kí hiệu là \({s^2}\) được tính bởi công thức nào sau đây? A. \({s^2} = \frac{1}{N}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \bar x} \right)}^2}} \) B. \({s^2} = \frac{1}{N}{\left( {\sum\limits_{i = 1}^N {\left( {{x_i} - \bar x} \right)} } \right)^2}\) C. \({s^2} = N\sum\limits_{i = 1}^N {{{\left( {{x_i} - \bar x} \right)}^2}} \) D. \({s^2} = N{\left( {\sum\limits_{i = 1}^N {\left( {{x_i} - \bar x} \right)} } \right)^2}\) Câu 19: Biết đồ thị hàm số \(y = a{x^2} + bx + c\), \(\left( {a,\,b,\,c\, \in \mathbb{R};\,a \ne 0} \right)\) đi qua điểm \(A\left( {2;1} \right)\) và có đỉnh \(I\left( {1\,;\, - 1} \right)\). Tính giá trị biểu thức \(T = {a^3} + {b^2} - 2c\). A. \(T = 22\). B. \(T = 9\). C. \(T = 6\). D. \(T = 1\). Câu 20: Một cửa hàng bán sách thống kê số tiền (đơn vị: nghìn đồng) mà 60 khách hàng mua sách ở cửa hàng trong một ngày. Số liệu được ghi trong bảng phân bố tần số sau:
Số trung bình cộng và độ lệch chuẩn xấp xỉ bằng (kết quả được làm tròn đến chữ số thập phân thứ hai). A. 69,34 và 10,26 B. 69,33 và 10,25 C. 10,25 và 69,33 D. 10,26 và 69,34 Câu 21: Đường thẳng \( - x + 3y > 2\) chia mặt phẳng tọa độ thành các miền như hình vẽ. Xác định miền nghiệm của \( - x + 3y > 2\).
A. Nửa mặt phẳng có bờ là d cùng phía gốc tọa độ O và có lấy đường thẳng d. B. Nửa mặt phẳng có bờ là d khác phía gốc tọa độ O và có lấy đường thẳng d. C. Nửa mặt phẳng có bờ là d cùng phía gốc tọa độ O và không lấy đường thẳng d. D. Nửa mặt phẳng có bờ là d khác phía gốc tọa độ O và không lấy đường thẳng d. Câu 22: Điểm nào dưới đây thuộc miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + 2y > {\rm{ \;}} - 4}\\{3x - y < 5}\\{x + 1 > 0}\end{array}} \right.\). A. \(\left( { - 2, - 3} \right)\) B. \(\left( {2, - 3} \right)\) C. \(\left( {4,0} \right)\) D. \(\left( {0,2} \right)\) Câu 23: Cho tam giác ABC thỏa mãn hệ thức b + c = 2a. Trong các mệnh đề sau, mệnh đề nào đúng? A. \(\cos B + \cos C = 2\cos A.\) B. \(\sin B + \sin C = 2\sin A.\) C. \(\sin B + \sin C = \frac{1}{2}\sin A.\) D. \(\sin B + \cos C = 2\sin A.\) Câu 24: Cho tam giác đều ABC có độ dài các cạnh bằng 4 và điểm M thỏa mãn \(\overrightarrow {BM} {\rm{ \;}} = {\rm{ \;}} - \frac{1}{2}\overrightarrow {BC} \). Tính tích vô hướng \(\overrightarrow {BM} .\overrightarrow {BA} \). A. \(\overrightarrow {BM} .\overrightarrow {BA} {\rm{ \;}} = 4.\) B. \(\overrightarrow {BM} .\overrightarrow {BA} {\rm{ \;}} = {\rm{ \;}} - 4\sqrt 3 .\) C. \(\overrightarrow {BM} .\overrightarrow {BA} {\rm{ \;}} = 4\sqrt 3 .\) D. \(\overrightarrow {BM} .\overrightarrow {BA} {\rm{ \;}} = {\rm{ \;}} - 4.\) Câu 25: Cho hàm số \(y = a{x^2} + bx + c\) có bảng biến thiên dưới đây. Đáp án nào sau đây là đúng?
A. \(y = {x^2} + 2x - 2.\) B. \(y = {x^2} - 2x - 2.\) C. \(y = {x^2}{\rm{ + 3}}x - 2.\) D. \(y = - {x^2} - 2x - 2.\) Câu 26: Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình dưới
Phương trình của parabol này là A. \(y = - {x^2} + x - 1\). B. \(y = 2{x^2} + 4x - 1\). C. \(y = {x^2} - 2x - 1\). D. \(y = 2{x^2} - 4x - 1\). Câu 27: Khoảng biến thiên của mẫu số liệu 10; 13; 15; 2; 10; 19; 2; 5; 7 là: A. 3. B. 8. C. 17. D. 20. Câu 28: Trong đợt hội diễn văn nghệ chào mừng 20/11, lớp 10A đăng kí tham gia 3 tiết mục là hát tốp ca, múa và diễn kịch. Trong danh sách đăng kí, có 7 học sinh đăng kí tiết mục hát tốp ca, 6 học sinh đăng kí tiết mục múa, 8 học sinh đăng kí diễn kịch; trong đó có 3 học sinh đăng kí cả tiết mục hát tốp ca và tiết mục múa, 4 học sinh đăng kí cả tiết mục hát tốp ca và diễn kịch, 2 học sinh đăng kí cả tiết mục múa và diễn kịch, 1 học sinh đăng kí cả 3 tiết mục. Hỏi lớp 10A có tất cả bao nhiêu học sinh đăng kí tham gia hội diễn văn nghệ? A. 14. B. 13. C. 21. D. 11. Câu 29: Cho hình chữ nhật ABCD biết AB = 4a, AD = 3a. Gọi O là giao điểm của hai đường chéo AC và BD. Tính độ dài \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {OD} \). A. 7a. B. \(\frac{7}{2}a.\) C. \(\frac{5}{2}a.\) D. 5a. Câu 30: Cho hai vectơ \(\vec a\) và \(\vec b\) khác \(\vec 0\). Xác định góc \(\alpha \) giữa hai vectơ \(\vec a\) và \(\vec b\) khi \(2\vec a.\vec b{\rm{ \;}} = {\rm{ \;}} - \left| {\vec a} \right|.\left| {\vec b} \right|\). A. \(\alpha {\rm{ \;}} = {180^0}.\) B. \(\alpha {\rm{ \;}} = {120^0}.\) C. \(\alpha {\rm{ \;}} = {90^0}.\) D. \(\alpha {\rm{ \;}} = {60^0}.\) Phần 2: Tự luận (4 điểm) Câu 1: Cho tam giác ABC. Gọi M là điểm thỏa mãn \(3\overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0\) và G là trọng tâm của tam giác ABC. a) Chứng minh rằng \(\overrightarrow {MG} {\rm{ \;}} = \frac{1}{{12}}\overrightarrow {AC} {\rm{ \;}} - \frac{5}{{12}}\overrightarrow {AB} \). b) Gọi K là giao điểm của hai đường thẳng AC và MG. Tính tỉ số \(\frac{{KA}}{{KC}}.\) Câu 2: a) Xác định parabol \((P):y = a{x^2} + bx + c\), biết rằng \((P)\) có đỉnh \(I(2; - 1)\) và cắt trục tung tại điểm có tung độ bằng -3. b) Xét sự biến thiên và vẽ đồ thị hàm số (P) tìm được. Câu 3: 592128) Cho tam giác ABC có BC = 3 thỏa mãn \(4\sin A\tan A = \sin B\sin C\). Gọi G là trọng tâm tam giác ABC. Tính giá trị biểu thức \(S = G{B^2} + G{C^2} + 9G{A^2}\). ----- HẾT -----
Giải đề 5 HƯỚNG DẪN GIẢI CHI TIẾT Phần 1: Trắc nghiệm (30 câu – 6 điểm)
Câu 1 (NB): Phương pháp: Mệnh đề là câu khẳng định có tính đúng hoặc sai. Cách giải: Bạn bao nhiêu tuổi? là câu nghi vấn nên không phải là mệnh đề. Chọn A. Câu 2 (NB): Phương pháp: Ta thường dùng các chữ cái in hoa để kí hiệu tập hợp và chữ cái in thường để kí hiệu phần tử thuộc tập hợp. Cách giải: Ta có: \(\bar a = 31975421 \pm 150 \Rightarrow \bar a \in \left[ {31975271;31975571} \right]\). Khi làm tròn số gần đúng a ta nên làm tròn đến hàng nghìn vì chữ số hàng trăm không chắc chắn đúng. Vậy quy tròn số gần đúng a ta được số 31975000. Chọn D. Câu 3 (TH): Phương pháp: Sử dụng quy tắc ba điểm. Sử dụng hai vectơ bằng nhau. Cách giải: Ta có: \(\begin{array}{*{20}{l}}{\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BM} {\rm{ \;}} + \overrightarrow {NA} {\rm{ \;}} + \overrightarrow {BQ} }\\{ = \overrightarrow {AM} {\rm{ \;}} + \overrightarrow {NA} {\rm{ \;}} + \overrightarrow {BQ} }\\{ = \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {BQ} {\rm{ \;}} + \overrightarrow {NA} }\\{ = \overrightarrow {MQ} {\rm{ \;}} + \overrightarrow {NA} }\\{ = \overrightarrow {BN} {\rm{ \;}} + \overrightarrow {NA} }\\{ = \overrightarrow {BA} }\end{array}\) Chọn B. Câu 4 (NB): Phương pháp: Sử dụng định lí cosin trong tam giác: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos \angle BAC.\) Cách giải: Ta có: \(\begin{array}{*{20}{l}}{B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos \angle BAC.}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {6^2} + {8^2} - 2.6.8.\cos {{120}^0}}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = 148}\\{ \Rightarrow BC = \sqrt {148} {\rm{ \;}} = 2\sqrt {37} .}\end{array}\) Chọn D. Câu 5 (NB): Phương pháp: Cặp số nào thỏa mãn bất phương trình là nghiệm của bất phương trình. Cách giải: Thay cặp số (x;y) = (0;4) vào bất phương trình: 0 – 4 + 3 > 0 => Sai. Thay cặp số (x;y) = (2;5) vào bất phương trình: 2 – 5 + 3 > 0 => Sai. Thay cặp số (x;y) = (1;3) vào bất phương trình: 1 – 3 + 3 > 0 => Đúng. Thay cặp số (x;y) = (1;4) vào bất phương trình: 1 – 4 + 3 > 0 => Sai. Chọn C. Câu 6 (TH): Phương pháp: Sử dụng quy tắc hình bình hành. Cách giải: Theo quy tắc hình bình hành ta có: \(\begin{array}{*{20}{l}}{\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AD} {\rm{ \;}} = \overrightarrow {AC} }\\{ \Rightarrow \overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} {\rm{ \;}} + \overrightarrow {AD} {\rm{ \;}} = \overrightarrow {AC} {\rm{ \;}} + \overrightarrow {AC} {\rm{ \;}} = 2\overrightarrow {AC} }\\{ \Rightarrow k = 2.}\end{array}\) Chọn C. Câu 7 (NB): Phương pháp: Sử dụng các công thức tính diện tích tam giác: \(S = \frac{{abc}}{{4R}}\), \(S = \frac{1}{2}ab\sin C\), \(S = \frac{1}{2}\sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \), \(S = p.R\) với \(p = \frac{{a + b + c}}{2}.\) Cách giải: \(S = \frac{1}{2}ab\sin C\) nên đáp án D sai. Chọn D. Câu 8 (TH): Phương pháp: \(\sqrt {f(x)} \) xác định khi \(f(x) \ge 0\) \(\frac{1}{{g(x)}}\) xác định khi \(g(x) \ne 0\) Cách giải: Điều kiện: \(\left\{ \begin{array}{l}{x^2} - 3x + 2 \ge 0\\x + 3 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \in \left( { - \infty ;1} \right] \cup \left[ {2; + \infty } \right)\\x > - 3\end{array} \right. \Leftrightarrow x \in \left( { - 3;1} \right] \cup \left[ {2; + \infty } \right)\). Chọn B. Câu 9 (TH): Phương pháp: Biểu diễn các tập hợp trên trục số và thực hiện các phép toán trên tập hợp. Cách giải:
\(P\backslash Q = \left[ { - 4; - 3} \right] \Rightarrow A\) đúng.
\(P \cap Q = \left( { - 3;5} \right) \Rightarrow B\) sai.
\(P \cup Q = \left[ { - 4; + \infty } \right) \Rightarrow C\) sai.
\({C_\mathbb{R}}P = \mathbb{R}\backslash P = \left( { - \infty ; - 4} \right) \cup \left[ {5; + \infty } \right) \Rightarrow D\) sai. Chọn A. Câu 10 (TH): Phương pháp: Sử dụng khái niệm các phép toán trên tập hợp. Cách giải: Phần tô đậm trong hình vẽ biểu diễn cho tập hợp \(\left( {A \cap B} \right)\backslash C.\) Chọn D. Câu 11 (TH): Phương pháp: Sử dụng định lí Cosin trong tam giác ABC ta có: \(A{B^2} = A{C^2} + B{C^2} - 2AC.BC.\cos C.\) Cách giải: Áp dụng định lí Cosin trong tam giác ABC ta có: \(\begin{array}{*{20}{l}}{A{B^2} = A{C^2} + B{C^2} - 2AC.BC.\cos C}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {{200}^2} + {{180}^2} - 2.200.180.\cos {{52}^0}16' \approx 28337}\\{ \Rightarrow AB \approx 168{\mkern 1mu} {\mkern 1mu} \left( m \right)}\end{array}\) Chọn D. Câu 12 (TH): Phương pháp: Dùng công thức \({\sin ^2}x + {\cos ^2}x = 1\) để tính cos x Cách giải: \(\begin{array}{*{20}{l}}{\sin x = \frac{1}{2} \Rightarrow \sin {x^2} = \frac{1}{4} \Rightarrow {{\cos }^2}x = 1 - {{\sin }^2}x = 1 - \frac{1}{4} = \frac{3}{4}}\\{ \Rightarrow {{\sin }^2}x - {{\cos }^2}x = \frac{1}{4} - \frac{3}{4} = \frac{{ - 1}}{2}}\end{array}\) Chọn B. Câu 13 (VD): Cách giải: TXĐ: \(D = \mathbb{R}{\rm{\backslash \{ }} - 1\} \). Xét \({x_1};\,{x_2}\, \in \,D\)và\({x_1} < {x_2} \Leftrightarrow {x_1} - {x_2} < 0\) Khi đó với hàm số \(y = f\left( x \right) = \frac{4}{{x + 1}}\) \( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{4}{{{x_1} + 1}} - \frac{4}{{{x_2} + 1}} = 4.\frac{{\left( {{x_2} - {x_1}} \right)}}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}}\) Trên \(\left( { - \infty ; - 1} \right)\)\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = 4.\frac{{\left( {{x_2} - {x_1}} \right)}}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}} > 0\)nên hàm số nghịch biến. Trên \(\left( { - 1; + \infty } \right)\)\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = 4.\frac{{\left( {{x_2} - {x_1}} \right)}}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}} > 0\)nên hàm số nghịch biến. Vậy \(y = \left| {x + 1} \right| - \left| {1 - x} \right|\)không là hàm số chẵn. Chọn C. Câu 14 (TH): Phương pháp: Nếu \(\alpha {\rm{ \;}} + \beta {\rm{ \;}} = {90^0}\) thì \(\sin \alpha {\rm{ \;}} = \cos \beta \). Cách giải: Ta có: \(\begin{array}{*{20}{l}}{A = {{\sin }^2}{{51}^0} + {{\sin }^2}{{55}^0} + {{\sin }^2}{{39}^0} + {{\sin }^2}{{35}^0}}\\{A = \left( {{{\sin }^2}51 + {{\sin }^2}{{39}^0}} \right) + \left( {{{\sin }^2}{{55}^0} + {{\sin }^2}{{35}^0}} \right)}\\{A = \left( {{{\sin }^2}51 + {{\sin }^2}\left( {{{90}^0} - {{51}^0}} \right)} \right) + \left( {{{\sin }^2}{{55}^0} + {{\sin }^2}\left( {{{90}^0} - {{55}^0}} \right)} \right)}\\{A = \left( {{{\sin }^2}51 + {{\cos }^2}{{51}^0}} \right) + \left( {{{\sin }^2}{{55}^0} + {{\cos }^2}{{55}^0}} \right)}\\{A = 1 + 1 = 2.}\end{array}\) Chọn D. Câu 15 (TH): Phương pháp: Vì M đứng yên nên \(\overrightarrow {{F_1}} {\rm{ \;}} + \overrightarrow {{F_2}} {\rm{ \;}} + \overrightarrow {{F_3}} {\rm{ \;}} = \vec 0{\rm{ \;}} \Rightarrow \overrightarrow {MA} {\rm{ \;}} + \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0\). Sử dụng quy tắc hình bình hành. Cách giải: Vì M đứng yên nên \(\overrightarrow {{F_1}} {\rm{ \;}} + \overrightarrow {{F_2}} {\rm{ \;}} + \overrightarrow {{F_3}} {\rm{ \;}} = \vec 0{\rm{ \;}} \Rightarrow \overrightarrow {MA} {\rm{ \;}} + \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0\). Áp dụng quy tắc hình bình hành ta có: \(\overrightarrow {MA} {\rm{ \;}} + \overrightarrow {MB} {\rm{ \;}} = \overrightarrow {MD} \), với D là đỉnh thứ tư của hình bình hành AMBD như hình vẽ.
\(\begin{array}{*{20}{l}}{ \Rightarrow \overrightarrow {MD} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0{\rm{ \;}} \Rightarrow \overrightarrow {MC} {\rm{ \;}} = {\rm{ \;}} - \overrightarrow {MD} }\\{ \Rightarrow \left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {MC} } \right| = \left| { - \overrightarrow {MD} } \right| = MD}\end{array}\) Vì MA = MB = 100, \(\angle AMB = {60^0}\) nên tam giác AMB đều \( \Rightarrow MD = 100\sqrt 3 \). Vậy \(\left| {\overrightarrow {{F_3}} } \right| = 100\sqrt 3 N.\) Chọn D. Câu 16 (TH): Phương pháp: Tọa độ đỉnh của parabol \(y = a{x^2} + bx + c\) là \(I\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\) Cách giải: Tọa độ đỉnh của parabol \(y = - 2{x^2} - 4x + 6\) là \(\left\{ \begin{array}{l}x = - \frac{{ - 4}}{{2.\left( { - 2} \right)}} = - 1\\y = - 2.{\left( { - 1} \right)^2} - 4.\left( { - 1} \right) + 6 = 8\end{array} \right. \Rightarrow I\left( { - 1;8} \right)\). Chọn A. Câu 17 (VD): Phương pháp: Xác định và so sánh phương sai, độ lệch chuẩn về tốc độ của 20 chiếc xe ô tô trên mỗi con đường. Cách giải: *) Con đường A Bảng phân bố tần số:
Số trung bình: \(\overline {{x_A}} {\rm{\;}} = \frac{{60.2 + 65.4 + 68.2 + 72.1 + 75.2 + 76.2 + 80.2 + 84.1 + 85.2 + 90.2}}{{20}}\)\( = 74,2\left( {{\rm{km/h}}} \right)\) Phương sai: \(s_A^2 = \frac{1}{{20}}\left[ {2.{{(60 - 74,2)}^2} + 4.{{(65 - 74,2)}^2} + ... + 2.{{(90 - 74,2)}^2}} \right] = 86,36\left( {km/h} \right)\) Độ lệch chuẩn: \({s_A} = \sqrt {s_A^2} {\rm{\;}} = \sqrt {86,36} {\rm{\;}} \approx 9,29{\mkern 1mu} {\mkern 1mu} \left( {km/h} \right)\) *) Con đường B Bảng phân bố tần số:
Số trung bình: \({x_B} = \frac{{55.3 + 60.1 + 62.2 + 64.2 + 70.3 + 76.2 + 79.3 + 80.2 + 85.2}}{{20}} = 70,3\left( {{\rm{km/h}}} \right)\) Phương sai: \(s_B^2 = \frac{1}{{20}}\left[ {3.{{(55 - 70,3)}^2} + 1.{{(60 - 70,3)}^2} + ... + 2.{{(85 - 70,3)}^2}} \right] = 96,91\left( {km/h} \right)\) Độ lệch chuẩn: \({s_B} = \sqrt {s_B^2} {\rm{\;}} = \sqrt {96,91} {\rm{\;}} \approx 9,84{\mkern 1mu} {\mkern 1mu} \left( {km/h} \right)\) Vậy xe chạy trên con đường A sẽ an toàn hơn. Chọn A. Câu 18 (NB): Phương pháp: Cho mẫu số liệu có kích thước \(N\) là \(\left\{ {{x_1};{\mkern 1mu} {\mkern 1mu} {x_2};{\mkern 1mu} {\mkern 1mu} \ldots ;{\mkern 1mu} {\mkern 1mu} {x_N}} \right\}\). Phương sai của mẫu số liệu này bằng trung bình của tổng các bình phương độ lệch giữa các giá trị với số trung bình. Cách giải: Dựa theo lý thuyết, ta có: Dãy số liệu \({x_1},{\mkern 1mu} {\mkern 1mu} {x_2}, \ldots ,{\mkern 1mu} {\mkern 1mu} {x_N}\) có kích thước mẫu \(N\), phương sai được tính theo công thức: \({s^2} = \frac{1}{N}\sum\limits_{i = 1}^N {{{\left( {{x_i} - \bar x} \right)}^2}} \) trong đó \(\bar x = \) trung bình cộng của mẫu số liệu Chọn A. Câu 19 (TH): Phương pháp: Tọa độ đỉnh của parabol \(y = a{x^2} + bx + c\) là \(I\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\) Cách giải: Đồ thị hàm số \(y = {\rm{a}}{{\rm{x}}^2} + bx + c\) đi qua điểm \(A\left( {2;1} \right)\) và có đỉnh \(I\left( {1\,;\, - 1} \right)\) nên có hệ phương trình \(\left\{ \begin{array}{l}4a + 2b + c = 1\\ - \frac{b}{{2a}} = 1\\a + b + c = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4a + 2b + c = 1\\b = - 2a\\a + b + c = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 1\\b = - 2a\\ - a + c = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 1\\b = - 4\\a = 2\end{array} \right.\). Vậy \(T = {a^3} + {b^2} - 2c = 22\). Chọn A. Câu 20 (TH): Phương pháp: Đối với bảng phân bố tần số ghép lớp: + Số trung bình cộng: \(\bar x = \frac{{{c_1}{n_1} + {c_2}{n_2} + \ldots + {c_k}{n_k}}}{N}\) + Phương sai: \({s^2} = \frac{1}{N}\left[ {{n_1}{{\left( {{c_1} - \bar x} \right)}^2} + {n_2}{{\left( {{c_2} - \bar x} \right)}^2} + \ldots + {n_k}{{\left( {{c_k} - \bar x} \right)}^2}} \right]\) + Độ lệch chuẩn: \(s = \sqrt {{s^2}} \) Với \({n_i}\) là tần số của giá trị \({c_i}\). Cách giải: Ta có bảng phân bố tần số, tần suất ghép lớp:
Số trung bình cộng: \(\bar x = \frac{{44,5.3 + 54,5.6 + 64,5.19 + 74,5.23 + 84,5.9}}{{60}} = \frac{{4160}}{{60}} \approx 69,33\) (nghìn đồng) Phương sai: \({s^2} = \frac{1}{{60}}\left( {3.44,{5^2} + 6.54,{5^2} + 19.64,{5^2} + 23.74,{5^2} + 9.84,{5^2}} \right) - {\left( {\frac{{4160}}{{60}}} \right)^2}\)\( = \frac{{3779}}{{36}}\) (nghìn đồng) Độ lệch chuẩn: \(s = \sqrt {{s^2}} \)\( = \sqrt {\frac{{3779}}{{36}}} {\rm{\;}} \approx 10,25\) (nghìn đồng) Chọn B. Câu 21 (NB): Phương pháp: Chọn điểm bất kì thỏa mãn bất phương trình để chọn miền nghiệm Cách giải: Vì O(0,0) không thuộc miền nghiệm nên nửa mặt phẳng có bờ là d khác phía gốc tọa độ O và không lấy đường thẳng d Chọn D. Câu 22 (NB): Phương pháp: Vẽ đồ thị hoặc thử các đáp án Cách giải: \(\left( {0,2} \right)\) thỏa mãn 3 phương trình trong hệ phương trình nên chọn D Chọn D. Câu 23 (TH): Phương pháp: Sử dụng định lí Sin trong tam giác \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\). Cách giải: Sử dụng định lí Sin trong tam giác \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\) \( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2R\sin A}\\{b = 2R\sin B}\\{c = 2R\sin C}\end{array}} \right.\). Theo giả thiết ta có: \(\begin{array}{*{20}{l}}{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} b + c = 2a}\\{ \Leftrightarrow 2R\sin B + 2R\sin C = 2.2R\sin A}\\{ \Leftrightarrow \sin B + \sin C = 2\sin A.}\end{array}\) Chọn B. Câu 24 (TH): Phương pháp: Sử dụng công thức \(\overrightarrow {BM} .\overrightarrow {BA} {\rm{ \;}} = BM.BA.\cos \left( {\overrightarrow {BM} ,\overrightarrow {BA} } \right).\) Cách giải: Ta có: \(\overrightarrow {BM} .\overrightarrow {BA} {\rm{ \;}} = {\rm{ \;}} - \frac{1}{2}\overrightarrow {BC} .\overrightarrow {BA} {\rm{ \;}} = {\rm{ \;}} - \frac{1}{2}BC.BA.\cos \left( {\overrightarrow {BC} ,\overrightarrow {BA} } \right).\) Vì tam giác ABC đều nên \(\cos \left( {\overrightarrow {BC} ,\overrightarrow {BA} } \right) = \angle ABC = {60^0}\). \( \Rightarrow \overrightarrow {BM} .\overrightarrow {BA} = - \frac{1}{2}.4.4.\frac{{\sqrt 3 }}{2} = {\rm{ \;}} - 4\sqrt 3 .\) Chọn B. Câu 25 (TH): Phương pháp: Tọa độ đỉnh của parabol \(y = a{x^2} + bx + c\) là \(I\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\) Cách giải: Từ BBT ta có \(a > 0\) nên loại đáp án D. Đỉnh \(I\left( {1; - 3} \right)\) nên \( - \frac{b}{{2{\rm{a}}}} = 1\) Đáp án A. \(y = {x^2} + 2x - 2\) có \(a = 1,b = 2 \Rightarrow \frac{{ - b}}{{2a}} = - 1\) (Loại) Đáp án B. \(y = {x^2} - 2x - 2\) có \(a = 1,b = - 2 \Rightarrow \frac{{ - b}}{{2a}} = 1\) (TM) Đáp án C. \(y = {x^2} + 3x - 2\) có \(a = 1,b = 3 \Rightarrow \frac{{ - b}}{{2a}} = - \frac{3}{2}\) (Loại) Chọn B. Câu 26 (TH): Phương pháp: Tọa độ đỉnh của parabol \(y = a{x^2} + bx + c\) là \(I\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\) Cách giải: Đồ thị hàm số cắt trục tung tại điểm \(\left( {0\,\,;\,\, - 1} \right)\) nên \(c = - 1\). Tọa độ đỉnh \(I\left( {1\,\,;\, - 3} \right)\), ta có phương trình: \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 1\\a{.1^2} + b.1 - 1 = - 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}2a + b = 0\\a + b = - 2\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 4\end{array} \right.\). Vậy parabol cần tìm là: \(y = 2{x^2} - 4x - 1\). Chọn D. Câu 27 (TH): Phương pháp: Khoảng biến thiên, kí hiệu là R, là hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất trong mẫu số liệu. Cách giải: Giá trị lớn nhất trong mẫu số liệu là 19. Giá trị nhỏ nhất trong mẫu số liệu là 2. Vậy khoảng biến thiên R = 19 – 2 = 17. Chọn C. Câu 28 (VD): Phương pháp: Sử dụng công thức \(n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) - n\left( {A \cap B} \right) - n\left( {B \cap C} \right) - n\left( {C \cap A} \right) + n\left( {A \cap B \cap C} \right)\). Cách giải: Gọi A là tập hợp các bạn đăng kí tiết mục tốp ca \( \Rightarrow n\left( A \right) = 7.\) B là tập hợp các bạn đăng kí tiết mục múa \( \Rightarrow n\left( B \right) = 6.\) C là tập hợp các bạn đăng kí tiết mục diễn kịch \( \Rightarrow n\left( C \right) = 8.\) \( \Rightarrow A \cap B:\) tập hợp các bạn đăng kí cả 2 tiết mục tốp ca và múa \( \Rightarrow n\left( {A \cap B} \right) = 3.\) \(A \cap C\): tập hợp các bạn đăng kí cả 2 tiết mục tốp ca và diễn kịch \( \Rightarrow n\left( {A \cap C} \right) = 4.\) \(B \cap C\): tập hợp các bạn đăng kí cả 2 tiết mục múa và diễn kịch \( \Rightarrow n\left( {B \cap C} \right) = 2.\) \(A \cap B \cap C\): tập hợp các bạn đăng kí cả 3 tiết mục tốp ca, múa và diễn kịch \( \Rightarrow n\left( {A \cap B \cap C} \right) = 1.\) \(A \cup B \cup C\): tập hợp các bạn đăng kí ít nhất 1 tiết mục. Ta có: \(n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) - n\left( {A \cap B} \right) - n\left( {B \cap C} \right) - n\left( {C \cap A} \right) + n\left( {A \cap B \cap C} \right)\) \( \Rightarrow n\left( {A \cup B \cup C} \right) = 7 + 6 + 8 - 3 - 4 - 2 + 1 = 13.\) Chọn B. Câu 29 (TH): Phương pháp: Sử dụng hai vectơ bằng nhau, đưa về hai vectơ chung điểm đầu và cuối, sử dụng quy tắc ba điểm. Cách giải:
Ta có: \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {OD} {\rm{ \;}} = \overrightarrow {OD} {\rm{ \;}} + \overrightarrow {AB} {\rm{ \;}} = \overrightarrow {OD} {\rm{ \;}} + \overrightarrow {DC} {\rm{ \;}} = \overrightarrow {OC} \). \( \Rightarrow \left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {OD} } \right| = \left| {\overrightarrow {OC} } \right| = OC\). Áp dụng định lí Pytago ta có: \(AC = \sqrt {A{B^2} + B{C^2}} {\rm{ \;}} = \sqrt {{{\left( {4a} \right)}^2} + {{\left( {3a} \right)}^2}} {\rm{ \;}} = 5a \Rightarrow OC = \frac{1}{2}AC = \frac{5}{2}a.\) Vậy \(\left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {OD} } \right| = OC = \frac{5}{2}a.\) Chọn C. Câu 30 (TH): Phương pháp: Sử dụng định nghĩa tích vô hướng của hai vectơ: \(\vec a.\vec b{\rm{ \;}} = \left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\). Cách giải: Ta có: \(\begin{array}{l}\vec a.\vec b = \left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\\ \Leftrightarrow 2\vec a.\vec b = 2\left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\\ \Leftrightarrow - \left| {\vec a} \right|.\left| {\vec b} \right| = 2\left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\\ \Leftrightarrow \left| {\vec a} \right|.\left| {\vec b} \right|\left[ {1 + 2\cos \left( {\vec a,\vec b} \right)} \right] = 0\\ \Leftrightarrow \cos \left( {\vec a,\vec b} \right) = - \frac{1}{2}{\mkern 1mu} {\mkern 1mu} \left( {do{\mkern 1mu} {\mkern 1mu} \vec a \ne \vec 0,{\mkern 1mu} {\mkern 1mu} \vec b \ne \vec 0} \right)\end{array}\) \( \Leftrightarrow \left( {\vec a,\vec b} \right) = {120^0}.\) Chọn B.
Phần 2: Tự luận (4 điểm) Câu 1 (VD): Phương pháp: a) Gọi I là trung điểm của BC. Chứng minh M là trung điểm của BI. Sử dụng quy tắc ba điểm, công thức trung điểm. b) Sử dụng điều kiện để hai vectơ cùng phương. Cách giải:
a) Gọi I là trung điểm của BC. Ta có: \(3\overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0{\rm{ \;}} \Rightarrow 3MB = MC \Rightarrow MB = \frac{1}{4}BC = \frac{1}{2}BI\). => M là trung điểm của BI. Khi đó ta có: \(\begin{array}{*{20}{l}}{\overrightarrow {MG} = \overrightarrow {MI} + \overrightarrow {IG} = \frac{1}{4}\overrightarrow {BC} - \frac{1}{3}\overrightarrow {AI} }\\{ = \frac{1}{4}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) - \frac{1}{3}.\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)}\\{ = \frac{1}{4}\overrightarrow {AC} - \frac{1}{4}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AC} }\\{ = \frac{1}{{12}}\overrightarrow {AC} - \frac{5}{{12}}\overrightarrow {AB} {\mkern 1mu} {\mkern 1mu} \left( {dpcm} \right).}\end{array}\) b) Đặt \(\overrightarrow {AK} {\rm{ \;}} = x\overrightarrow {AC} {\mkern 1mu} {\mkern 1mu} \left( {x > 0} \right)\), ta có: \(\begin{array}{*{20}{l}}{\overrightarrow {GK} {\rm{ \;}} = \overrightarrow {AK} {\rm{ \;}} - \overrightarrow {AG} {\rm{ \;}} = x\overrightarrow {AC} {\rm{ \;}} - \frac{2}{3}\overrightarrow {AI} }\\{ = x\overrightarrow {AC} {\rm{ \;}} - \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} } \right) = \left( {x - \frac{1}{3}} \right)\overrightarrow {AC} {\rm{ \;}} - \frac{1}{3}\overrightarrow {AB} }\end{array}\) Vì M, G, K thẳng hàng nên \(\frac{{x - \frac{1}{3}}}{{\frac{1}{{12}}}} = \frac{{ - \frac{1}{3}}}{{ - \frac{5}{{12}}}} \Leftrightarrow x = \frac{2}{5}.\) Vậy \(\overrightarrow {AK} {\rm{\;}} = \frac{2}{5}\overrightarrow {AC} \) nên \(AK = \frac{2}{5}AC \Rightarrow \frac{{KA}}{{KC}} = \frac{2}{3}.\) Câu 2 (VD): Phương pháp: a) Hàm số \(y = a{x^2} + bx + c(a \ne 0)\) có đỉnh \(\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\). b) Sự biến thiên
* Vẽ đồ thị + Đỉnh I\(\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\) + Trục đối xứng \(x = - \frac{b}{{2a}}\) + Giao với các trục (nếu có) + Lấy các điểm thuộc đồ thị (đối xứng nhau qua trục đối xứng). Cách giải: a) Ta có: (P) giao với Oy tại điểm có tung độ bằng -3 hay điểm (0;-3). Suy ra \(a.0 + b.0 + c = - 3 \Leftrightarrow c = - 3\) Vì (P) có đỉnh I(2;-1) nên \(\left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = 2\\a{.2^2} + b.2 + ( - 3) = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - b = 4a\\4a + 2b - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{2}\\b = 2\end{array} \right.\) Vậy parabol (P) là \(y = - \frac{1}{2}{x^2} + 2x - 3\) b) Hàm số \(y = - \frac{1}{2}{x^2} + 2x - 3\) có \(a = - \frac{1}{2} < 0\), đỉnh I(2;-1) nên có bảng biến thiên:
Hàm số đồng biến trên \(( - \infty ;2)\) và nghịch biến trên khoảng \((2; + \infty )\) * Vẽ đồ thị Đỉnh I(2;-1) Trục đối xứng \(x = 2\) Cắt trục tung tại A(0;-3) và không cắt Ox Lấy B(4;-3) thuộc (P), đối xứng với A(0;-3) qua trục đối xứng Lấy \(C\left( {1; - \frac{3}{2}} \right),D\left( {3; - \frac{3}{2}} \right)\) thuộc (P).
Câu 3 (VDC): Phương pháp: Ta thường dùng các chữ cái in hoa để kí hiệu tập hợp và chữ cái in thường để kí hiệu phần tử thuộc tập hợp. Cách giải: Ta có \(\begin{array}{l}S = G{B^2} + G{C^2} + 9G{A^2}\\{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {\left( {\frac{2}{3}{m_b}} \right)^2} + {\left( {\frac{2}{3}{m_c}} \right)^2} + 9.{\left( {\frac{2}{3}{m_a}} \right)^2}\\{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \frac{4}{9}{m_b}^2 + \frac{4}{9}{m_c}^2 + 4{m_a}^2\\{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \frac{4}{9}.\left( {\frac{{2{a^2} + 2{c^2} - {b^2}}}{4} + \frac{{2{a^2} + 2{b^2} - {c^2}}}{4}} \right) + 4.\frac{{2{b^2} + 2{c^2} - {a^2}}}{4}\\{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \frac{4}{9}.\frac{{4{a^2} + {b^2} + {c^2}}}{4} + 2{b^2} + 2{c^2} - {a^2}\end{array}\) \(\begin{array}{l}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \frac{{4{a^2} + {b^2} + {c^2}}}{9} + 2{b^2} + 2{c^2} - {a^2}\\{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \frac{{19}}{9}\left( {{b^2} + {c^2}} \right) - \frac{5}{9}{a^2}\end{array}\) Theo giả thiết ta có: \(4\sin A\tan A = \sin B\sin C \Leftrightarrow 4{\sin ^2}A = \sin B\sin C\cos A{\mkern 1mu} {\mkern 1mu} \left( * \right)\) Áp dụng định lí sin trong tam giác ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\sin A = \frac{a}{{2R}}}\\{\sin B = \frac{b}{{2R}}}\\{\sin C = \frac{c}{{2R}}}\end{array}} \right.\) Thay vào (*) ta có: \(\begin{array}{*{20}{l}}{\left( * \right) \Leftrightarrow 4{{\left( {\frac{a}{{2R}}} \right)}^2} = \frac{b}{{2R}}.\frac{c}{{2R}}\cos A}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \Leftrightarrow 4.\frac{{{a^2}}}{{4{R^2}}} = \frac{{bc}}{{4{R^2}}}\cos A}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \Leftrightarrow 4{a^2} = bc\cos A}\end{array}\) Lại theo định lí cosin trong tam giác ABC ta có: \(\begin{array}{*{20}{l}}{{a^2} = {b^2} + {c^2} - 2bc\cos A}\\{ \Rightarrow bc\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{2}}\end{array}\) Khi đó ta có: \(\begin{array}{*{20}{l}}{\left( * \right) \Leftrightarrow 4{a^2} = \frac{{{b^2} + {c^2} - {a^2}}}{2}}\\{ \Leftrightarrow 8{a^2} = {b^2} + {c^2} - {a^2}}\\{ \Leftrightarrow 9{a^2} = {b^2} + {c^2}}\end{array}\) Do đó: \(S = \frac{{19}}{9}\left( {{b^2} + {c^2}} \right) - \frac{5}{9}{a^2} = \frac{{19}}{9}.9{a^2} - \frac{5}{9}{a^2} = \frac{{166{a^2}}}{9} = 166.\) Vậy S = 166. Đề 6 I. Trắc nghiệm (7 điểm) Câu 1: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \sqrt {6 - 3x} - \sqrt {x - 1} .\) A. \({\rm{D}} = \left[ {1;2} \right].\) B. \({\rm{D}} = \left( {1;2} \right).\) C. \({\rm{D}} = \left[ {1;3} \right].\) D. \({\rm{D}} = \left[ { - 1;2} \right].\) Câu 2: Mệnh đề phủ định của mệnh đề “\(\forall x \in \mathbb{R},\,\,x - 2 > 5\)” là: A. “\(\exists x \in \mathbb{R},\,\,x - 2 \le 5\)”. B. “\(\exists x \in \mathbb{R},\,\,x - 2 \ge 5\)”. C. “\(\forall x \in \mathbb{R},\,\,x - 2 \le 5\)”. D. “\(\forall x \in \mathbb{R},\,\,x - 2 \ge 5\)”. Câu 3: Cho tập hợp \(D = \left\{ {x \in {\mathbb{N}^*}|x\left( {x - 2} \right)\left( {x - 3} \right) = 0} \right\}\). Viết lại tập hợp D dưới dạng liệt kê các phần tử của tập hợp đó. A. D = {2;3}. B. D = {0;1;2}. C. D = {1;2}. D. D = {0;2;3}. Câu 4: Xét sự biến thiên của hàm số \(y = \frac{1}{{{x^2}}}\). Mệnh đề nào sau đây đúng? A. Hàm số đồng biến trên \(\left( { - \infty ;0} \right)\), nghịch biến trên \(\left( {0; + \infty } \right)\). B. Hàm số đồng biến trên \(\left( {0; + \infty } \right)\), nghịch biến trên \(\left( { - \infty ;0} \right)\). C. Hàm số đồng biến trên \(\left( { - \infty ;1} \right)\), nghịch biến trên \(\left( {1; + \infty } \right)\). D. Hàm số nghịch biến trên\(\left( { - \infty ;0} \right) \cup \left( {0; + \infty } \right)\). Câu 5: Cho hai tập hợp \(A = \left( { - \infty ; - 2} \right]\) và \(B = \left( { - 3;5} \right]\). Tìm mệnh đề sai. A. \(A \cap B = \left( { - 3; - 2} \right].\) B. \(A\backslash B = \left( { - \infty ; - 3} \right)\). C. \(A \cup B = \left( { - \infty ;5} \right]\). D. \(B\backslash A = \left( { - 2;5} \right]\). Câu 6: Trong các tập hợp sau, tập hợp nào là tập con của tập hợp \(A = \left\{ {1;2;3;4;5} \right\}\)? A. \({A_1} = \left\{ {1;6} \right\}.\) B. \({A_2} = \left\{ {0;1;3} \right\}.\) C. \({A_3} = \left\{ {4;5} \right\}.\) D. \({A_4} = \left\{ 0 \right\}.\) Câu 7: Cho parabol \(\left( P \right):y = 3{x^2} - 2x + 1\). Điểm nào sau đây là đỉnh của \(\left( P \right)\)? A. \(I\left( {0;1} \right)\). B. \(I\left( {\frac{1}{3};\,\frac{2}{3}} \right)\). C. \(I\left( { - \frac{1}{3};\,\frac{2}{3}} \right)\). D. \(I\left( {\frac{1}{3};\, - \frac{2}{3}} \right)\). Câu 8: Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn? A. \(2{x^3} + 1 \ge y + 2{x^2}.\) B. \(2x - 6y + 5 < 2x - 6y + 3.\) C. \(2{x^2} + 1 \ge y + 2{x^2}.\) D. \(4{x^2} < 2x + 5y - 6.\) Câu 9: Điểm nào dưới đây thuộc miền nghiệm của bất phương trình \(3x + 2y < 10\)? A. (5;1). B. (4;2). C. (1;5). D. (1;2). Câu 10: Trong tam giác EFG, chọn mệnh đề đúng. A. \(E{F^2} = E{G^2} + F{G^2} + 2EG.FG.\cos G.\) B. \(E{F^2} = E{G^2} + F{G^2} + 2EG.FG.\cos E.\) C. \(E{F^2} = E{G^2} + F{G^2} - 2EG.FG.\cos E.\) D. \(E{F^2} = E{G^2} + F{G^2} - 2EG.FG.\cos G.\) Câu 11: Cho parabol \(\left( P \right):\,y = {x^2} + mx + n\) (\(m,\,n\) là tham số). Xác định \(m,\,n\) để \(\left( P \right)\)nhận đỉnh \(I\left( {2;\, - 1} \right)\). A. \(m = 4,\,n = - 3\). B. \(m = 4,\,n = 3\). C. \(m = - 4,\,n = - 3\). D. \(m = - 4,\,n = 3\). Câu 12: Cho tam giác ABC có b = 7, c = 5, \(\cos A = \frac{3}{5}.\) Độ dài đường cao \({h_a}\) của tam giác ABC là: A. \(8.\) B. \(8\sqrt 3 .\) C. \(\frac{{7\sqrt 2 }}{2}.\) D. \(7\sqrt 2 .\) Câu 13: Cho hàm số \(f\left( x \right) = a{x^2} + bx + c\)đồ thị như hình. Tính giá trị biểu thức \(T = {a^2} + {b^2} + {c^2}\).
A. \(0\). B. \(26\). C. \(8\). D. \(20\). Câu 14: Trong các hệ bất phương trình sau, hệ bất phương trình nào là hệ bất phương trình bậc nhất hai ẩn? A. \(\left\{ \begin{array}{l}{x^2} - 4 \ge 0\\3x + 4y < 2\end{array} \right.\). B. \(x - y > 0\). C. \(\left\{ \begin{array}{l}{y^2} + 2y - 3 > 0\\5x - y > 2\end{array} \right.\). D. \(\left\{ \begin{array}{l}x - 4 \ge y\\3x + 4y < 5\end{array} \right.\). Câu 15: Giá trị của biểu thức \(T = 2 + {\sin ^2}{90^0} + 2{\cos ^2}{60^0} - 3{\tan ^2}{45^0}\) bằng: A. 3. B. \( - \frac{1}{2}\). C. 1. D. \(\frac{1}{2}\). Câu 16: Cho tam giác ABC có BC = a, AC = b, AB = c, có R, r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp và hc là độ dài đường cao xuất phát từ đỉnh C. Chọn mệnh đề sai. A. \({S_{ABC}} = ab\sin C.\) B. \({S_{ABC}} = pr.\) C. \({S_{ABC}} = \frac{{abc}}{{4R}}.\) D. \({S_{ABC}} = \frac{1}{2}c.{h_c}.\) Câu 17: Tam giác ABC có BC = 1, AC = 3, \(\angle C = {60^0}\). Tính độ dài cạnh AB. A. \(\sqrt {13} .\) B. \(\sqrt 7 .\) C. \(\frac{{\sqrt {34} }}{2}.\) D. \(\frac{{\sqrt {46} }}{2}.\) Câu 18: Bảng biến thiên nào dưới đây là của hàm số \(y = - {x^2} + 2x + 2\)? A. . B. . C. . D. . Câu 19: Phần không bị gạch trên hình vẽ dưới đây minh họa cho tập hợp nào?
A. \(\left( {0;1} \right).\) B. \(\left( {1; + \infty } \right).\) C. \(\left[ {1; + \infty } \right).\) D. \(\left( {0;1} \right].\) Câu 20: Cho \(\alpha \) và \(\beta \) là hai góc khác nhau và bù nhau, trong các đẳng thức sau đây đẳng thức nào sai? A. \(\sin \alpha = \sin \beta .\) B. \(\cos \alpha = - \cos \beta .\) C. \(\tan \alpha = - \tan \beta .\) D. \(\cot \alpha = \cot \beta .\) Câu 21: Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị như hình bên dưới. Khẳng định nào sau đây đúng? ` A. \(a > 0,{\rm{ }}b < 0,{\rm{ }}c < 0\). B. \(a > 0,{\rm{ }}b < 0,{\rm{ }}c > 0\). C. \(a > 0,{\rm{ }}b > 0,{\rm{ }}c > 0\). D. \(a < 0,{\rm{ }}b < 0,{\rm{ }}c < 0\).
Câu 22: Tam giác ABC có AB = 4, BC = 6, \(AC = 2\sqrt 7 \). Điểm M thuộc đoạn BC sao cho MC = 2MB. Tính độ dài cạnh AM. A. \(AM = 3\sqrt 2 .\) B. \(AM = 4\sqrt 2 .\) C. \(AM = 2\sqrt 3 .\) D. \(AM = 3.\) Câu 23: Nửa mặt phẳng không bị gạch chéo ở hình dưới đây là miền nghiệm của bất phương trình nào trong các bất phương trình sau?
A. \(2x + y < 1.\) B. \(2x - y > 1.\) C. \(x + 2y > 1.\) D. \(2x + y > 1.\) Câu 24: Cho góc \(\alpha \) với \({0^0} < \alpha < {180^0}\). Tính giá trị của \(\cos \alpha \), biết \(\tan \alpha = - 2\sqrt 2 \). A. \( - \frac{1}{3}.\) B. \(\frac{1}{3}.\) C. \(\frac{{2\sqrt 2 }}{3}.\) D. \(\frac{{\sqrt 2 }}{3}.\) Câu 25: Một ca nô xuất phát từ cảng A, chạy theo hướng đông với vận tốc 50 km/h. Cùng lúc đó, một tàu cá, xuất phát từ A, chạy theo hướng N30°E với vận tốc 40 km/h. Sau 3 giờ, hai tàu cách nhau bao nhiêu kilômét? A. 135,7km. B. 237,5km. C. 110km. D. 137,5km. Câu 26. Sử dụng máy tính bỏ túi, hãy viết giá trị gần đúng của \(\sqrt 3 \) chính xác đến hàng phần nghìn. A. 1,7320. B. 1,732. C. 1,733. D. 1,731. Câu 27. Đo độ cao một ngọn cây là \(h = 347,13{\rm{m}} \pm 0,2{\rm{m}}.\) Hãy viết số quy tròn của số gần đúng 347,13. A. 345. B. 347. C. 348. D. 346. Câu 28: Ba nhóm học sinh gồm 20 người, 15 người, 25 người. Cân nặng trung bình của mỗi nhóm lần lượt là 50kg, 38kg, 40kg. Cân nặng trung bình của cả ba nhóm học sinh là: A. 41,6kg. B. 42,8kg. C. 41,8kg. D. Đáp số khác. Câu 29: Có 100 học sinh dự thi học sinh giỏi Toán (điểm 20). Kết quả như sau:
Nhận xét nào sau đây là đúng? A. Phương sai lớn hơn 4, độ lệch chuẩn lớn hơn 2 B. Phương sai lớn hơn 5, độ lệch chuẩn lớn hơn 2 C. Phương sai nhỏ hơn 5, độ lệch chuẩn lớn hơn 2 D. Phương sai nhỏ hơn 4, độ lệch chuẩn nhỏ hơn 2 Câu 30. Cho hình chữ nhật \(ABCD.\) Khẳng định nào sau đây đúng? A. \(\overrightarrow {AC} = \overrightarrow {BD} .\) B. \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = \vec 0.\) C. \(\left| {\overrightarrow {AB} - \overrightarrow {AD} } \right| = \left| {\overrightarrow {AB} + \overrightarrow {AD} } \right|.\) D. \(\left| {\overrightarrow {BC} + \overrightarrow {BD} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|.\) Câu 31. Cho tam giác \(ABC\) và điểm \(M\) thỏa mãn điều kiện \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \). Mệnh đề nào sau đây sai? A. \(MABC\) là hình bình hành. B. \(\overrightarrow {AM} + \overrightarrow {AB} = \overrightarrow {AC} .\) C. \(\overrightarrow {BA} + \overrightarrow {BC} = \overrightarrow {BM} .\) D. \(\overrightarrow {MA} = \overrightarrow {BC} .\) Câu 32. Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng? A.\(\overrightarrow {AC} + \overrightarrow {BD} = 2\overrightarrow {BC} \) B. \(\overrightarrow {AC} + \overrightarrow {BC} = \overrightarrow {AB} \) C. \(\overrightarrow {AC} - \overrightarrow {BD} = 2\overrightarrow {CD} \) D. \(\overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {CD} \) Câu 33. Cho tam giác OAB vuông cân tại O, cạnh \(OA = a\). Khẳng định nào sau đây sai? A.\(\left| {3\overrightarrow {OA} + 4\overrightarrow {OB} } \right| = 5a\) B. \(\left| {2\overrightarrow {OA} } \right| + \left| {3\overrightarrow {OB} } \right| = 5a\) C. \(\left| {7\overrightarrow {OA} - 2\overrightarrow {OB} } \right| = 5a\) D. \(\left| {11\overrightarrow {OA} } \right| - \left| {6\overrightarrow {OB} } \right| = 5a\) Câu 34. Cho tam giác \(ABC\) có \(BC = a,\,{\rm{ }}CA = b,{\rm{ }}AB = c.\) Gọi \(M\) là trung điểm cạnh \(BC.\) Tính \(\overrightarrow {AM} .\overrightarrow {BC} .\) A. \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{b^2} - {c^2}}}{2}.\) B. \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{c^2} + {b^2}}}{2}.\) C. \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{c^2} + {b^2} + {a^2}}}{3}.\) D. \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{c^2} + {b^2} - {a^2}}}{2}.\) Câu 35. Cho hình vuông \(ABCD\) cạnh \(a.\) Tính \(P = \left( {\overrightarrow {AB} + \overrightarrow {AC} } \right).\left( {\overrightarrow {BC} + \overrightarrow {BD} + \overrightarrow {BA} } \right).\) A. \(P = 2\sqrt 2 a.\) B. \(P = 2{a^2}.\) C. \(P = {a^2}.\) D. \(P = - 2{a^2}.\)
II. Tự luận (3 điểm) Câu 1: (1,5 điểm) Cho tam giác ABC, M là điểm bất kỳ. a) Chứng minh rằng \(\overrightarrow {MA} .\overrightarrow {BC} + \overrightarrow {MB} .\overrightarrow {CA} + \overrightarrow {MC} .\overrightarrow {AB} = 0\) b) Gọi G là trọng tâm tam giác ABC. Chứng minh: \(M{A^2} + M{B^2} + M{C^2} = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\) c) Chứng minh rằng \(G{A^2} + G{B^2} + G{C^2} = \frac{1}{3}({a^2} + {b^2} + {c^2})\), với a, b, c là độ dài 3 cạnh của tam giác. Câu 2: (1 điểm) Từ hai vị trí \(A\) và \(B\) của một tòa nhà, người ta quan sát đỉnh \(C\) của ngọn núi. Biết rằng độ cao \(AB = 70{\rm{m}}\), phương nhìn \(AC\) tạo với phương nằm ngang góc \({30^0}\), phương nhìn \(BC\) tạo với phương nằm ngang góc \({15^0}30'\). Tìm độ cao của ngọn núi đó có độ cao so với mặt đất.
Câu 3: (0,5 điểm) Xác định hàm số \(y = a{x^2} + bx + c\)biết đồ thị của hàm số cắt trục tung tại điểm có tung độ là \( - 3\)và giá trị nhỏ nhất của hàm số là \( - \frac{{25}}{8}\)tại \(x = \frac{1}{4}\).
-----HẾT----- Giải đề 6 HƯỚNG DẪN GIẢI CHI TIẾT I. Trắc nghiệm (7 điểm)
Câu 1 (TH): Phương pháp: \(\sqrt {f(x)} \) xác định khi \(f(x) \ge 0\). Cách giải: Hàm số \(y = \sqrt {6 - 3x} - \sqrt {x - 1} \) xác định khi \(\left\{ \begin{array}{l}6 - 3x \ge 0\\x - 1 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6 \ge 3x\\x \ge 1\end{array} \right. \Leftrightarrow 1 \le x \le 2\) Do đó tập xác định là \({\rm{D}} = \left[ {1;2} \right].\) Chọn A. Câu 2 (TH): Phương pháp: Phủ định của \(\forall \) là \(\exists \), phủ định của > là \( \le \). Cách giải: Mệnh đề phủ định của mệnh đề “\(\forall x \in \mathbb{R},\,\,x - 2 > 5\)” là “\(\exists x \in \mathbb{R},\,\,x - 2 \le 5\)”. Chọn A. Câu 3 (TH): Phương pháp: Viết tập hợp theo cách liệt kê các phần tử. Cách giải: Giải phương trình \(x\left( {x - 2} \right)\left( {x - 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\\x = 3\end{array} \right.\). Mà \(x \in {\mathbb{N}^*} \Rightarrow x \in \left\{ {2;3} \right\}.\) Vậy D = {2;3}. Chọn A. Câu 4 (TH): Cách giải: TXĐ: \(D = \mathbb{R}{\rm{\backslash \{ }}0\} \) Xét \({x_1};\,{x_2}\, \in \,D\)và\({x_1} < {x_2} \Leftrightarrow {x_1} - {x_2} < 0\) Khi đó với hàm số \(y = f\left( x \right) = \frac{1}{{{x^2}}}\) \( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{{x_1}^2}} - \frac{1}{{{x_2}^2}} = \frac{{\left( {{x_2} - {x_1}} \right)\left( {{x_2} + {x_1}} \right)}}{{x_2^2.x_1^2}}\) Trên \(\left( { - \infty ;0} \right)\)\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{{\left( {{x_2} - {x_1}} \right)\left( {{x_2} + {x_1}} \right)}}{{{x_2}^2.{x_1}^2}} < 0\)nên hàmsố đồng biến. Trên \(\left( {0; + \infty } \right)\)\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{{\left( {{x_2} - {x_1}} \right)\left( {{x_2} + {x_1}} \right)}}{{{x_2}^2.{x_1}^2}} > 0\)nên hàm số nghịch biến. Chọn A. Câu 5 (VD): Phương pháp: Thực hiện các phép toán trên tập hợp. Sử dụng trục số. Cách giải: +) \(A \cap B = \left( { - 3; - 2} \right]\) => A đúng. +) \(A\backslash B = \left( { - \infty ; - 3} \right]\) => B sai. +) \(A \cup B = \left( { - \infty ;5} \right]\) => C đúng. +) \(B\backslash A = \left( { - 2;5} \right]\). => D đúng. Chọn B. Câu 6 (NB): Phương pháp: Tập hợp A được gọi là tập con của tập hợp B nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B. Cách giải: \({A_3} = \left\{ {4;5} \right\} \subset A = \left\{ {1;2;3;4;5} \right\}\). Chọn C. Câu 7 (TH): Cách giải: Hoành độ đỉnh của \(\left( P \right):y = 3{x^2} - 2x + 1\) là \(x = - \frac{b}{{2a}} = \frac{1}{3}\)\( \Rightarrow y = 3{\left( {\frac{1}{3}} \right)^2} - 2.\frac{1}{3} + 1 = \frac{2}{3}\). Vậy \(I\left( {\frac{1}{3};\,\frac{2}{3}} \right)\). Chọn B. Câu 8 (TH): Phương pháp: Bất phương trình bậc nhất hai ẩn x, y có dạng tổng quát là \(ax + by \le c\) (\(ax + by \ge c\), \(ax + by < c\), \(ax + by > c\)) Trong đó a, b, c là những số thực đã cho, a và b không đồng thời bằng 0, x và y là các ẩn số. Cách giải: Ta có: \(2{x^2} + 1 \ge y + 2{x^2} \Leftrightarrow y - 1 \le 0\) nên đây là một bất phương trình bậc nhất hai ẩn. Chọn C. Câu 9 (NB): Phương pháp: Thay các tọa độ điểm vào bất phương trình, điểm nào thỏa mãn bất phương trình thì thuộc miền nghiệm của bất phương trình đó. Cách giải: +) Thay tọa độ điểm (5;1) vào bất phương trình ta có: 3.5 + 2.1 < 10 (Vô lí) => (5;1) không thuộc miền nghiệm của bất phương trình. +) Thay tọa độ điểm (4;2) vào bất phương trình ta có: 3.4 + 2.2 < 10 (Vô lí) => (4;2) không thuộc miền nghiệm của bất phương trình. +) Thay tọa độ điểm (1;5) vào bất phương trình ta có: 3.1 + 2.5 < 10 (Vô lí) => (1;5) không thuộc miền nghiệm của bất phương trình. +) Thay tọa độ điểm (1;2) vào bất phương trình ta có: 3.1 + 2.2 < 10 (Đúng) => (1;2) không thuộc miền nghiệm của bất phương trình. Chọn D. Câu 10 (NB): Phương pháp: Sử dụng định lí cosin trong tam giác: \({a^2} = {b^2} + {c^2} - 2bc.\cos A.\) Cách giải: \(E{F^2} = E{G^2} + F{G^2} - 2EG.FG.\cos G\) là mệnh đề đúng. Chọn D. Câu 11 (TH): Cách giải: Parabol \(\left( P \right):\,y = {x^2} + mx + n\) nhận \(I\left( {2;\, - 1} \right)\) là đỉnh, khi đó ta có \(\left\{ \begin{array}{l}4 + 2m + n = - 1\\ - \frac{m}{2} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2m + n = - 5\\m = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n = 3\\m = - 4\end{array} \right.\). Vậy \(m = - 4,\,n = 3\). Chọn D. Câu 12 (VD): Phương pháp: Tính sinA. Tính diện tích tam giác ABC: \(S = \frac{1}{2}bc.\sin A.\) Sử dụng định lí cosin trong tam giác tính a: \({a^2} = {b^2} + {c^2} - 2bc.\cos A.\) Sử dụng công thức tính diện tích tam giác: \(S = \frac{1}{2}a{h_a}\), từ đó tính \({h_a}\). Cách giải: Ta có: \(\begin{array}{l}{\sin ^2}A + {\cos ^2}A = 1\\ \Leftrightarrow {\sin ^2}A + {\left( {\frac{3}{5}} \right)^2} = 1\\ \Leftrightarrow {\sin ^2}A = \frac{{16}}{{25}}\end{array}\) Vì \({0^0} < A < {180^0}\) nên sinA > 0 \( \Rightarrow \sin A = \frac{4}{5}.\) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A. = \frac{1}{2}.7.5.\frac{4}{5} = 14.\) Áp dụng định lí cosin trong tam giác ABC ta có: \(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A.\\\,\,\,\,\,\, = {7^2} + {5^2} - 2.7.5.\frac{3}{5}\\\,\,\,\,\,\, = 32\\ \Rightarrow a = 4\sqrt 2 .\end{array}\) Lại có: \(S = \frac{1}{2}a{h_a} \Rightarrow {h_a} = \frac{{2S}}{a} = \frac{{2.14}}{{4\sqrt 2 }} = \frac{{7\sqrt 2 }}{2}.\) Chọn C. Câu 13 (TH): Cách giải: Do đồ thị hàm số có đỉnh là \(I\left( {2; - 1} \right)\)\( \Rightarrow \left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = 2\\f\left( 2 \right) = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4a + b = 0\\4a + 2b + c = - 1\end{array} \right.\) \(\left( 1 \right)\) Do đồ thị hàm số đi qua điểm \(\left( {0;3} \right) \Rightarrow f\left( 0 \right) = 3 \Leftrightarrow c = 3\)\(\left( 2 \right)\) Từ \(\left( 1 \right)\)và\(\left( 2 \right)\) \( \Rightarrow \left\{ \begin{array}{l}a = 1\\b = - 4\\c = 3\end{array} \right.\)\( \Rightarrow T = 26\) Chọn B. Câu 14 (NB): Phương pháp: Hệ bất phương trình bậc nhất hai ẩn là một hệ gồm hai hay nhiều bất phương trình bậc nhất hai ẩn. Cách giải: \(\left\{ \begin{array}{l}x - 4 \ge y\\3x + 4y < 5\end{array} \right.\) là hệ bất phương trình bậc nhất hai ẩn. Chọn D. Câu 15 (NB): Phương pháp: Nhớ bảng giá trị lượng giác của các góc thường dùng hoặc sử dụng máy tính cầm tay. Cách giải: \(\begin{array}{l}T = 2 + {\sin ^2}{90^0} + 2{\cos ^2}{60^0} - 3{\tan ^2}{45^0}\\T = 2 + {1^2} + 2.{\left( {\frac{1}{2}} \right)^2} - {3.1^2}\\T = \frac{1}{2}.\end{array}\) Chọn D. Câu 16 (NB): Phương pháp: Sử dụng các công thức tính diện tích tam giác: \({S_{ABC}} = \frac{1}{2}ab\sin C = pr = \frac{{abc}}{{4S}} = \frac{1}{2}c.{h_c}.\) Cách giải: \({S_{ABC}} = \frac{1}{2}ab\sin C\) nên đáp án A sai. Chọn A. Câu 17 (NB): Phương pháp: Áp dụng định lí Cosin trong tam giác: \(A{B^2} = B{C^2} + A{C^2} - 2BC.AC.\cos C\). Cách giải: Áp dụng định lí Cosin trong tam giác ABC: \(\begin{array}{l}A{B^2} = B{C^2} + A{C^2} - 2BC.AC.\cos C\\\,\,\,\,\,\,\,\,\,\,\, = {1^2} + {3^2} - 2.1.3.\cos {60^0} = 7\\ \Rightarrow AB = \sqrt 7 .\end{array}\) Chọn B. Câu 18 (TH): Cách giải: Hàm số \(y = - {x^2} + 2x + 2\) là hàm số bậc hai, có \(a = - 1 < 0,b = 2\) => Loại A, D. Parabol có hoành độ đỉnh \( - \frac{b}{{2a}} = - \frac{2}{{2.( - 1)}} = 1\) => Loại B Chọn C. Câu 19 (NB): Phương pháp: Biểu diễn tập hợp trên trục số. Cách giải: Hình vẽ đã cho là minh họa cho tập hợp \(\left[ {1; + \infty } \right).\) Chọn C. Câu 20 (NB): Phương pháp: Sử dụng mối liên hệ giá trị lượng giác của hai góc bù nhau: Cho \(\alpha \) và \(\beta \) là hai góc khác nhau và bù nhau ta có: \(\sin \alpha = \sin \beta ,\) \(\cos \alpha = - \cos \beta \), \(\tan \alpha = - \tan \beta \), \(\cot \alpha = - \cot \beta .\) Cách giải: \(\alpha \) và \(\beta \) là hai góc khác nhau và bù nhau nên \(\sin \alpha = \sin \beta ,\) \(\cos \alpha = - \cos \beta \), \(\tan \alpha = - \tan \beta \), \(\cot \alpha = - \cot \beta .\) Vậy đẳng thức ở đáp án D sai. Chọn D. Câu 21 (TH): Cách giải: Parabol có bề lõm quay lên \( \Rightarrow a > 0\) loại D. Parabol cắt trục tung tại điểm có tung độ âm nên \(c < 0\) loại B, C. Chọn A. Câu 22 (VD): Phương pháp: Sử dụng hệ quả định lí cosin trong tam giác ABC tính cosB: \(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}}\). Tính BM, CM. Sử dụng định lí cosin trong tam giác ABM tính AM: \(A{M^2} = A{B^2} + B{M^2} - 2AB.BM.\cos B\). Cách giải:
Ta có: \(\begin{array}{l}\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}}\\\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{4^2} + {6^2} - {{\left( {2\sqrt 7 } \right)}^2}}}{{2.4.6}} = \frac{1}{2}\end{array}\) Vì MC = 2MB, BC = 6 nên \(BM = \frac{1}{3}BC = \frac{1}{3}.6 = 2.\) Áp dụng định lí cosin trong tam giác ABM ta có: \(\begin{array}{l}A{M^2} = A{B^2} + B{M^2} - 2AB.BM.\cos B\\\,\,\,\,\,\,\,\,\,\,\,\,\, = {4^2} + {2^2} - 2.4.2.\frac{1}{2} = 12\\ \Rightarrow AM = 2\sqrt 3 .\end{array}\) Chọn C. Câu 23 (TH): Phương pháp: Tìm phương trình đường thẳng d. Loại đáp án. Thay tọa độ điểm O(0;0) vào các bất phương trình chưa bị loại ở các đáp án, tiếp tục loại đáp án. Cách giải: Đường thẳng d đi qua điểm (0;1) nên loại đáp án B, C. Ta thấy điểm O(0;0) không thuộc miền nghiệm của bất phương trình. + Thay tọa độ điểm O(0;0) vào bất phương trình \(2x + y < 1\) ta có: 2.0 + 0 < 1 (Đúng) => Loại. + Thay tọa độ điểm O(0;0) vào bất phương trình \(2x + y > 1\) ta có: 2.0 + 0 > 1 (Vô lí) => Thỏa mãn. Chọn D. Câu 24 (TH): Phương pháp: Sử dụng công thức: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}.\) Cách giải: Ta có: \(\begin{array}{l}\,\,\,\,\,\,\,1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow 1 + {\left( { - 2\sqrt 2 } \right)^2} = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow {\cos ^2}\alpha = \frac{1}{9}\\ \Leftrightarrow \cos \alpha = \pm \frac{1}{3}\end{array}\) Vì \({0^0} < \alpha < {180^0}\) \( \Rightarrow \sin \alpha > 0\). Mà \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} < 0\) nên \(\cos \alpha < 0\). Vậy \(\cos \alpha = - \frac{1}{3}.\) Chọn A. Câu 25 (VD): Phương pháp: Hướng N300E là hướng tạo với hướng bắc một góc 300 và tạo với hướng đông một góc \({90^0} - {30^0} = {60^0}\). Áp dụng định lí cosin trong tam giác. Cách giải: Hướng N300E là hướng tạo với hướng bắc một góc 300 và tạo với hướng đông một góc \({90^0} - {30^0} = {60^0}\).
A là vị trí cảng. Ca nô đi theo hướng đông từ A đến B, sau 3 giờ đi được quãng đường AB = 50.3 = 150 (km). Tàu cá đi theo hướng N300E từ A đến C, sau 3 giờ đi được quãng đường AC = 40.3 = 120 (km). Áp dụng định lí Cosin trong tam giác ABC ta có: \(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos {60^{}}\\\,\,\,\,\,\,\,\,\,\,\, = {150^2} + {120^2} - 2.150.120.\frac{1}{2}\\\,\,\,\,\,\,\,\,\,\,\, = 18\,900\\ \Rightarrow BC = 30\sqrt {21} \approx 137,5.\end{array}\) Vậy sau 3 giờ hai tàu cách nhau khoảng 137,5km. Chọn D. Câu 26. Cách giải Sử dụng máy tính cầm tay, ta được \(\sqrt 3 = 1,7320508076...\) Làm tròn đến hàng phần nghìn ta được kết quả:\(1,732\). Chọn B. Câu 27. Cách giải Ta có: \(h = 347,13{\rm{m}} \pm 0,2{\rm{m}} \Rightarrow d = 0,2\) Độ chính xác d có chữ số (khác 0) ở hàng lớn nhất là hàng phần mười, do đó ta làm tròn số gần đúng \(h = 347,13\) đến hàng đơn vị, kết quả là \(347.\) Chọn B. Câu 28 (TH): Phương pháp: Số trung bình cộng \(\bar x = \frac{{{m_1}{x_1} + {m_2}{x_2} + ... + {m_k}{x_k}}}{n}\) trong đó mk là tần số của giá trị xk và \(n = {m_1} + {m_2} + ... + {m_k}\) Cách giải: Khối lượng trung bình của cả ba nhóm học sinh là: \(\bar x = \frac{{20.50 + 15.38 + 25.40}}{{20 + 15 + 25}} = 42,8.\) Chọn B. Câu 29 (VD): Phương pháp: Áp dụng công thức tìm phương sai và độ lệch chuẩn. Cách giải: Số trung bình cộng: \(\bar x = \frac{{9.1 + 10.1 + 11.3 + 12.5 + 13.8 + 14.13 + 15.19 + 16.24 + 17.14 + 18.10 + 19.2}}{{100}}\)\( = \frac{{1523}}{{100}} = 15,23\) (điểm) Phương sai: \({s^2} = \frac{1}{{100}}\left[ {1.{{\left( {9 - 15,23} \right)}^2} + 1.{{\left( {10 - 15,23} \right)}^2} + {\rm{\;}} \ldots {\rm{\;}} + 10.{{\left( {18 - 15,23} \right)}^2} + 2.{{\left( {19 - 15,23} \right)}^2}} \right]\) \( = 3,9571\)(điểm) Độ lệch chuẩn: \(s = \sqrt {{s^2}} \)\( = \sqrt {3,9571} {\rm{\;}} \approx 1,989{\rm{2}}\) (điểm) Vậy phương sai nhỏ hơn \(4\), độ lệch chuẩn nhỏ hơn \(2\). Chọn D. Câu 30. Cách giải:
Ta có \(\left\{ \begin{array}{l}\left| {\overrightarrow {AB} - \overrightarrow {AD} } \right| = \left| {\overrightarrow {DB} } \right| = BD\\\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AC} } \right| = AC\end{array} \right..\) Mà \(BD = AC \Rightarrow \left| {\overrightarrow {AB} - \overrightarrow {AD} } \right| = \left| {\overrightarrow {AB} + \overrightarrow {AD} } \right|.\) Chọn C. Câu 31. Cách giải:
Ta có \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {BA} + \overrightarrow {MC} = \overrightarrow 0 \Leftrightarrow \overrightarrow {MC} = \overrightarrow {AB} \) \( \Rightarrow MABC\) là hình bình hành \( \Rightarrow \overrightarrow {MA} = \overrightarrow {CB} .\) Do đó D sai. Chọn D. Câu 32. Cách giải: Vì ABCD là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \) hay \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow 0 \) Ta có: \(\left\{ \begin{array}{l}\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {BC} \\\overrightarrow {BD} = \overrightarrow {BC} + \overrightarrow {CD} \end{array} \right.\)\( \Rightarrow \overrightarrow {AC} + \overrightarrow {BD} = 2\overrightarrow {BC} + \overrightarrow {AB} + \overrightarrow {CD} = 2\overrightarrow {BC} \) Vậy A đúng. \(\overrightarrow {AC} + \overrightarrow {CB} = \overrightarrow {AB} \) => B sai. \(\overrightarrow {AC} - \overrightarrow {BD} = \overrightarrow {AB} - \overrightarrow {CD} = \overrightarrow {DC} + \overrightarrow {DC} = 2\overrightarrow {DC} = - 2\overrightarrow {CD} \) => C sai \(\overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {DC} \) => D sai. Chọn A.
Câu 33. Cách giải: Ta có: \(OA = OB = a\) \( \Rightarrow \left| {2\overrightarrow {OA} } \right| + \left| {3\overrightarrow {OB} } \right| = 2a + 3a = 5a\). Vậy B đúng. Tương tự, ta có \(\left| {11\overrightarrow {OA} } \right| - \left| {6\overrightarrow {OB} } \right| = 11a - 6a = 5a\). Do đó D đúng. Lấy C, D sao cho \(\overrightarrow {OC} = 3\overrightarrow {OA} ;\overrightarrow {OD} = 4\overrightarrow {OB} ;\) Dựng hình bình hành OCED. Do \(\widehat {AOB} = {90^ \circ }\) nên OCED là hình chữ nhật. Ta có: \(3\overrightarrow {OA} + 4\overrightarrow {OB} = \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow {OE} \) \( \Rightarrow \left| {3\overrightarrow {OA} + 4\overrightarrow {OB} } \right| = \left| {\overrightarrow {OE} } \right| = OE\) Lại có: \(OC = 3OA = 3a,OD = 4OB = 4a.\) \( \Rightarrow OE = \sqrt {O{C^2} + C{E^2}} = \sqrt {O{C^2} + O{D^2}} = \sqrt {{{(3a)}^2} + {{(4a)}^2}} = 5a\) Do đó A đúng. Chọn C Câu 34. Cách giải: Vì M là trung điểm của BC suy ra \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \) Khi đó \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right).\overrightarrow {BC} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right).\left( {\overrightarrow {BA} + \overrightarrow {AC} } \right)\) \( = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right).\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \frac{1}{2}\left( {{{\overrightarrow {AC} }^2} - {{\overrightarrow {AB} }^2}} \right) = \frac{1}{2}\left( {A{C^2} - A{B^2}} \right) = \frac{{{b^2} - {c^2}}}{2}\) Chọn A. Câu 35. Cách giải: Ta có \(\left\{ \begin{array}{l}BD = a\sqrt 2 \\\overrightarrow {BC} + \overrightarrow {BD} + \overrightarrow {BA} = \left( {\overrightarrow {BC} + \overrightarrow {BA} } \right) + \overrightarrow {BD} = \overrightarrow {BD} + \overrightarrow {BD} = 2\overrightarrow {BD} \end{array} \right.\) Khi đó \(P = \left( {\overrightarrow {AB} + \overrightarrow {AC} } \right).2\overrightarrow {BD} = 2\overrightarrow {AB} .\overrightarrow {BD} + 2\overrightarrow {AC} .\overrightarrow {BD} = - 2\overrightarrow {BA} .\overrightarrow {BD} + \vec 0\) \( = - 2BA.BD\cos \left( {\overrightarrow {BA} ,\overrightarrow {BD} } \right) = - 2.a.a\sqrt 2 .\frac{{\sqrt 2 }}{2} = - 2{a^2}\) Chọn D.
II. Tự luận (3 điểm) Câu 1 (TH): Cách giải: a) Ta có: \( = \overrightarrow {{\rm{MA}}} \cdot (\overrightarrow {{\rm{MC}}} - \overrightarrow {{\rm{MB}}} ) + \overrightarrow {{\rm{MB}}} (\overrightarrow {{\rm{MA}}} - \overrightarrow {{\rm{MC}}} ) + \overrightarrow {{\rm{MC}}} (\overrightarrow {{\rm{MB}}} - \overrightarrow {{\rm{MA}}} ) = \) \( = \overrightarrow {{\rm{MA}}} \cdot \overrightarrow {{\rm{MC}}} - \overrightarrow {{\rm{MA}}} \cdot \overrightarrow {{\rm{MB}}} + \overrightarrow {{\rm{MB}}} \cdot \overrightarrow {{\rm{MA}}} - \overrightarrow {{\rm{MB}}} \cdot \overrightarrow {{\rm{MC}}} + \overrightarrow {{\rm{MC}}} \cdot \overrightarrow {{\rm{MB}}} - \overrightarrow {{\rm{MC}}} \cdot \overrightarrow {{\rm{MA}}} \) \( = \overrightarrow {{\rm{MA}}} \cdot \overrightarrow {{\rm{MC}}} - \overrightarrow {{\rm{MC}}} \cdot \overrightarrow {{\rm{MA}}} - \overrightarrow {{\rm{MA}}} \cdot \overrightarrow {{\rm{MB}}} + \overrightarrow {{\rm{MB}}} \cdot \overrightarrow {{\rm{MA}}} - \overrightarrow {{\rm{MB}}} \cdot \overrightarrow {{\rm{MC}}} + \overrightarrow {{\rm{MC}}} \cdot \overrightarrow {{\rm{MB}}} = 0\) b) \({\rm{M}}{{\rm{A}}^2} = {\overrightarrow {{\rm{MA}}} ^2} = {(\overrightarrow {{\rm{MG}}} + \overrightarrow {{\rm{GA}}} )^2} = {\rm{M}}{{\rm{G}}^2} + {\rm{G}}{{\rm{A}}^2} + 2\overrightarrow {{\rm{MG}}} \cdot \overrightarrow {{\rm{GA}}} \) \({\rm{M}}{{\rm{B}}^2} = {\overrightarrow {{\rm{MB}}} ^2} = {(\overrightarrow {{\rm{MG}}} + \overrightarrow {{\rm{GB}}} )^2} = {\rm{M}}{{\rm{G}}^2} + {\rm{G}}{{\rm{B}}^2} + 2\overrightarrow {{\rm{MG}}} \cdot \overrightarrow {{\rm{GB}}} \) \({\rm{M}}{{\rm{C}}^2} = {\overrightarrow {{\rm{MC}}} ^2} = {(\overrightarrow {{\rm{MG}}} + \overrightarrow {{\rm{GC}}} )^2} = {\rm{M}}{{\rm{G}}^2} + {\rm{G}}{{\rm{C}}^2} + 2\overrightarrow {{\rm{MG}}} \cdot \overrightarrow {{\rm{GC}}} \) \( \Rightarrow {\rm{M}}{{\rm{A}}^2} + {\rm{M}}{{\rm{B}}^2} + {\rm{M}}{{\rm{C}}^2} = 3{\rm{M}}{{\rm{G}}^2} + {\rm{G}}{{\rm{A}}^2} + {\rm{G}}{{\rm{B}}^2} + {\rm{G}}{{\rm{C}}^2} + 2(\overrightarrow {{\rm{MG}}} \cdot \overrightarrow {{\rm{GA}}} + \overrightarrow {{\rm{MG}}} \cdot \overrightarrow {{\rm{GB}}} + \overrightarrow {{\rm{MG}}} \cdot \overrightarrow {{\rm{GC}}} )\) \( = 3{\rm{M}}{{\rm{G}}^2} + {\rm{G}}{{\rm{A}}^2} + {\rm{G}}{{\rm{B}}^2} + {\rm{G}}{{\rm{C}}^2} + 2\overrightarrow {{\rm{MG}}} (\overrightarrow {{\rm{GA}}} + \overrightarrow {{\rm{GB}}} + \overrightarrow {{\rm{GC}}} ) = 3{\rm{M}}{{\rm{G}}^2} + {\rm{G}}{{\rm{A}}^2} + {\rm{G}}{{\rm{B}}^2} + {\rm{G}}{{\rm{C}}^2}\) c) Vì \({\rm{M}}{{\rm{A}}^2} + {\rm{M}}{{\rm{B}}^2} + {\rm{M}}{{\rm{C}}^2} = 3{\rm{M}}{{\rm{G}}^2} + {\rm{G}}{{\rm{A}}^2} + {\rm{G}}{{\rm{B}}^2} + {\rm{G}}{{\rm{C}}^2}\) đúng với M bất kì. Chọn \({\rm{M}} \equiv {\rm{A}}\) ta được: \({\rm{A}}{{\rm{A}}^2} + {\rm{A}}{{\rm{B}}^2} + {\rm{A}}{{\rm{C}}^2} = 3{\rm{A}}{{\rm{G}}^2} + {\rm{G}}{{\rm{A}}^2} + {\rm{G}}{{\rm{B}}^2} + {\rm{G}}{{\rm{C}}^2}\) \( \Leftrightarrow {\rm{A}}{{\rm{B}}^2} + {\rm{A}}{{\rm{C}}^2} = 4{\rm{G}}{{\rm{A}}^2} + {\rm{G}}{{\rm{B}}^2} + {\rm{G}}{{\rm{C}}^2}\) Tương tự, \({\rm{M}} \equiv {\rm{B}} \Rightarrow {\rm{B}}{{\rm{A}}^2} + {\rm{B}}{{\rm{C}}^2} = 4\;{\rm{G}}{{\rm{B}}^2} + {\rm{G}}{{\rm{A}}^2} + {\rm{G}}{{\rm{C}}^2}\) \({\rm{M}} \equiv {\rm{C}} \Rightarrow {\rm{C}}{{\rm{B}}^2} + {\rm{A}}{{\rm{C}}^2} = 4{\rm{G}}{{\rm{C}}^2} + {\rm{G}}{{\rm{B}}^2} + {\rm{G}}{{\rm{A}}^2}\) Thay \(AB = c,AC = b,BC = a\) \(\begin{array}{l} \Rightarrow 6\left( {{\rm{G}}{{\rm{A}}^2} + {\rm{G}}{{\rm{B}}^2} + {\rm{G}}{{\rm{C}}^2}} \right) = 2\left( {{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2}} \right)\\ \Leftrightarrow {\rm{G}}{{\rm{A}}^2} + {\rm{G}}{{\rm{B}}^2} + {\rm{G}}{{\rm{C}}^2} = \frac{1}{3}\left( {{{\rm{a}}^2} + {{\rm{b}}^2} + {{\rm{c}}^2}} \right)\end{array}\)
Câu 2 (VD): Cách giải: Từ giả thiết, ta suy ra tam giác ABC có \(\widehat {CAB} = {60^^\circ },\widehat {ABC} = {105^^\circ }30'\)và \(c = 70\) Khi đó \(\hat A + \hat B + \hat C = {180^^\circ } \Leftrightarrow \hat C = {180^^\circ } - \left( {\hat A + \hat B} \right) = {180^^\circ } - {165^^\circ }30' = {14^^\circ }30'\) Theo định lí sin, ta có \(\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\) hay \(\frac{b}{{\sin {{105}^^\circ }30'}} = \frac{{70}}{{\sin {{14}^^\circ }30'}}\) Do đó \(AC = b = \sin {105^^\circ }30'\frac{{70}}{{\sin {{14}^^\circ }30'}} \approx 269,4m\) Gọi CH là khoảng cách từ C đến mặt đất. Tam giác vuông ACH có cạnh CH đối diện với góc \({30^^\circ }\) nên \(CH = \frac{{AC}}{2} = \frac{{269,4}}{2} = 134,7m\) Vậy ngọn núi cao khoảng 135m.
Câu 3 (VD): Cách giải: + Đồ thị cắt trục tung tại điểm \(A\left( {0;c} \right)\)\( \Rightarrow c = - 3\). + Giá trị nhỏ nhất của hàm số là \( - \frac{{25}}{8}\)tại \(x = \frac{1}{4}\)nên đỉnh của đồ thị hàm số là \(I\left( {\frac{1}{4}; - \frac{{25}}{8}} \right)\) Suy ra \(\left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = \frac{1}{4}\\a.\frac{1}{{16}} + \frac{1}{4}b - 3 = - \frac{{25}}{8}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2a + 4b = 0\\a + 4b = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\) Vậy hàm số cần tìm là \(y = 2{x^2} - x - 3\).
Đề 7 Phần 1: Trắc nghiệm (30 câu – 6 điểm) Câu 1: Cho các phát biểu sau đây: (1) “17 là số nguyên tố”. (2) “Tam giác vuông có một đường trung tuyến bằng nửa cạnh huyền”. (3) “Các em C14 hãy cố gắng học tập thật tốt nhé!” (4) “Mọi hình chữ nhật đều nội tiếp được đường tròn”. Hỏi có bao nhiêu phát biểu là mệnh đề? A. 4. B. 3. C. 2. D. 1. Câu 2: Giả sử biết số đúng là 8217,3. Sai số tuyệt đối khi quy tròn số này đến hàng chục là: A. 7,3. B. 2,3. C. 0,3. D. 2,7. Câu 3: Cho tam giác ABC có trung tuyến AM. Đặt \(\vec a{\rm{ \;}} = \overrightarrow {AB} ,{\mkern 1mu} {\mkern 1mu} \vec b{\rm{ \;}} = \overrightarrow {AM} \). Giả sử \(\overrightarrow {AC} {\rm{ \;}} = x\vec a{\rm{ \;}} + y\vec b,{\mkern 1mu} {\mkern 1mu} ,x,{\mkern 1mu} {\mkern 1mu} y \in \mathbb{R}\). Tìm cặp số (x;y) tương ứng. A. (-1;-2). B. (1;2). C. (-1;2). D. (1;-2). Câu 4: Lớp 10A có 37 học sinh, trong đó có 17 học sinh thích môn Văn, 19 học sinh thích môn Toán, 9 em không thích môn Văn và Toán. Số học sinh tích cả hai môn Văn và Toán là: A. 13. B. 8. C. 6. D. 2. Câu 5: Tìm tập nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{3x - 4 \ge 0}\\{\frac{{x - 1}}{2} - x \ge {\rm{ \;}} - 2}\end{array}} \right.\). A. \(S = \left[ {3; + \infty } \right).\) B. \(S = \left[ {\frac{4}{3};3} \right].\) C. \(S = \left[ {\frac{4}{3}; + \infty } \right).\) D. \(S = \emptyset .\) Câu 6: Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y - 1 > 0}\\{y \ge 2}\\{ - x + 2y > 3}\end{array}} \right.\) là phần không tô đậm của hình vẽ nào trong các hình vẽ sau: A. B. C. D. Câu 7: Cho tam giác ABC có AB = 9, AC = 18 và A = 600. Bán kính R của đường tròn ngoại tiếp tam giác ABC là: A. 3. B. \(9\sqrt 3 .\) C. 9. D. 6. Câu 8: Một người ngồi trên tàu hỏa đi từ ga A đến ga B. Khi đỗ tàu ở ga A, qua ống nhòm người đó nhìn thấy một tháp C. Hướng nhìn từ người đó đến tháp tạo với hướng đi của tàu một góc 600. Khi tàu đỗ ở ga B, người đó nhìn lại vẫn thấy tháp C, hướng nhìn từ người đó đến tháp tạo với hướng ngược với hướng đi của tàu một góc 450. Biết rằng đoạn đường tàu nối thẳng ga A với ga B dài 8km. Hỏi khoảng cách từ ga A đến tháp C gần nhất với số nào sau đây?
A. 5,9. B. 5,86. C. 5,78. D. 5,8. Câu 9: Biểu thức \({\tan ^2}x{\sin ^2}x - {\tan ^2}x + {\sin ^2}x\) có giá trị bằng A. -1. B. 0. C. 2. D. 1. Câu 10: Gọi AN, CM là các đường trung tuyến của tam giác ABC. Đẳng thức nào sau đây đúng? A. \(\overrightarrow {AB} {\rm{ \;}} = \frac{2}{3}\overrightarrow {AN} {\rm{ \;}} + \frac{2}{3}\overrightarrow {CM} \). B. \(\overrightarrow {AB} {\rm{ \;}} = \frac{4}{3}\overrightarrow {AN} {\rm{ \;}} - \frac{2}{3}\overrightarrow {CM} \). C. \(\overrightarrow {AB} {\rm{ \;}} = \frac{4}{3}\overrightarrow {AN} {\rm{ \;}} + \frac{4}{3}\overrightarrow {CM} \). D. \(\overrightarrow {AB} {\rm{ \;}} = \frac{4}{3}\overrightarrow {AN} {\rm{ \;}} + \frac{2}{3}\overrightarrow {CM} \). Câu 11: Điểm thi của 32 học sinh trong kì thi Tiếng Anh (thang điểm 100) như .sau:
Độ lệch chuẩn là: A. \(s \approx 13,793\) B. \(s \approx 19,973\) C. \(s \approx 17,393\) D. \(s \approx 13,933\) Câu 12: Gọi G là trọng tâm của tam giác ABC, nếu điểm M thỏa mãn hệ thức \(\overrightarrow {MA} {\rm{ \;}} + \overrightarrow {MB} {\rm{ \;}} + 4\overrightarrow {MC} {\rm{ \;}} = \vec 0\) thì vị trí của điểm M thuộc miền nào trong hình vẽ?
A. Miền 1. B. Miền 2. C. Miền 3. D. ở ngoài tam giác ABC. Câu 13: Tập xác định của hàm số \(y = \frac{{\sqrt {2x + 1} }}{{3 - x}}\) là: A. \(D = \left( {3; + \infty } \right)\). B. \(D = \left( { - \infty ;3} \right)\). C. \(D = \left[ { - \frac{1}{2}; + \infty } \right)\backslash \left\{ 3 \right\}\). D. \(D = \mathbb{R}\). Câu 14: Trong tam giác ABC, hệ thức nào sau đây sai?
A. \(a = \frac{{b\sin A}}{{\sin B}}.\) B. \(b = R.\tan B.\) C. \(\sin C = \frac{{c\sin A}}{a}.\) D. \(a = 2R\sin A.\) Câu 15: Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ Kết luận nào trong các kết luận sau là đúng?
A. Hàm số đồng biến trên \(\mathbb{R}\). B. Tập xác định \(D = [ - 3;3]\). C. Hàm số nghịch biến trên \((1;2)\) D. Cả ba đáp án đều sai. Câu 16: Sản lượng lúa của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng tần số sau đây: (đơn vị: tạ)
Phương sai là A. 1,24 B. 1,54 C. 22,1 D. 4,70 Câu 17: Bảng biến thiên của hàm số \(y = - {x^2} + 2x - 1\) là: A. . B. . C. . D. .
Câu 18: Cho hai tập hợp \(X = \left\{ {1;2;3;4} \right\}\), \(Y = \left\{ {1;2} \right\}\). Tập hợp \({C_X}Y\) là tập hợp nào sau đây? A. \(\left\{ {3;4} \right\}.\) B. \(\left\{ {1;2;3;4} \right\}.\) C. \(\left\{ {1;2} \right\}.\) D. \(\emptyset .\) Câu 19: Cho hàm số \(y = a{x^2} + bx + c\) có đồ thị là parabol trong hình vẽ. Khẳng định nào sau đây là đúng?
A. \(a > 0;{\rm{ }}b > 0;{\rm{ }}c > 0\). B. \(a > 0;{\rm{ }}b < 0;{\rm{ }}c > 0\). C. \(a > 0;{\rm{ }}b < 0;{\rm{ }}c < 0\). D. \(a > 0;{\rm{ }}b > 0;{\rm{ }}c < 0\). Câu 20: Trong hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + 3y - 2 \ge 0}\\{2x + y + 1 \le 0}\end{array}} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
A. A(0;1). B. C(1;3). C. B(-1;1). D. D(-1;0). Câu 21: Tổng giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là A. \( - 1\). B. \(2\). C. \(7\). D. \(8\). Câu 22: Cho \(\tan \alpha {\rm{ \;}} = {\rm{ \;}} - 2\). Tính giá trị của biểu thức \(P = \frac{{2\sin \alpha {\rm{ \;}} + 3\cos \alpha }}{{3\sin \alpha {\rm{ \;}} - 2\cos \alpha }}\).
A. \(P = \frac{7}{4}.\) B. \(P = {\rm{ \;}} - \frac{1}{8}.\) C. \(P = {\rm{ \;}} - \frac{7}{4}.\) D. \(P = \frac{1}{8}.\) Câu 23: Cho tam giác ABC có trung tuyến BM và trọng tâm \(G\). Đặt \(\overrightarrow {BC} {\rm{\;}} = \vec a,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BA} {\rm{\;}} = b\). Hãy phân tích vectơ \(\overrightarrow {BG} \) theo \(\vec a\) và \(\vec b\). A. \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\) B. \(\overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\vec a + \frac{2}{3}\vec b\) C. \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{2}{3}\vec b\) D. \(\overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\vec a + \frac{1}{3}\vec b\) Câu 24: Khẳng định nào sau đây là sai? A. Ba điểm phân biệt \(A,{\mkern 1mu} {\mkern 1mu} B,{\mkern 1mu} {\mkern 1mu} C\) thẳng hàng khi và chỉ khi \(\overrightarrow {AB} {\rm{\;}} = k\overrightarrow {BC} ,k \ne 0\). B. Ba điểm phân biệt \(A,{\mkern 1mu} {\mkern 1mu} B,{\mkern 1mu} {\mkern 1mu} C\) thẳng hàng khi và chỉ khi \(\overrightarrow {AC} = k\overrightarrow {BC} ,k \ne 0\). C. Ba điểm phân biệt \(A,{\mkern 1mu} {\mkern 1mu} B,{\mkern 1mu} {\mkern 1mu} C\) thẳng hàng khi và chỉ khi \(\overrightarrow {AB} {\rm{\;}} = k\overrightarrow {AC} ,k \ne 0\). D. Ba điểm phân biệt \(A,B,C\) thẳng hàng khi và chỉ khi \(\overrightarrow {AB} {\rm{\; = \;}}k\overrightarrow {AC} \). Câu 25: Cho tam giác ABC biết AB = 5, AC = 7, BC = 6. Bán kính đường tròn nội tiếp tam giác xấp xỉ là: A. 1,63 B. 1,71 C. 1,36 D. 1,06 Câu 26: Thực hiện đo chiều dài của bốn cây cầu, kết quả đo đạc nào trong các kết quả sau đây là chính xác nhất? A. \(15,34m \pm 0,01m.\) B. \(1527,4m \pm 0,2m.\) C. \(2135,8m \pm 0,5m.\) D. \(63,47m \pm 0,15m.\) Câu 27: Khoảng tứ phân vị của mẫu số liệu 1 1 1 2 2 2 3 3 4 20 là: A. 2. B. 1. C. 3. D. 4. Câu 28: Xác định parabol \(y = a{x^2} + bx + c\) biết (P) có đỉnh \(I(2;0)\) và \((P)\) cắt trục \(Oy\) tại điểm \(M(0; - 1)\). A. \((P):y = - \frac{1}{4}{x^2} -3 x - 1\) B. \((P):y = - \frac{1}{4}{x^2} - x - 1\) C. \((P):y = - \frac{1}{4}{x^2} + x - 1\) D. \((P):y = - \frac{1}{4}{x^2} +2 x - 1\)
Câu 29: Cho ba điểm không thẳng hàng A, B, C. Điều kiện cần và đủ để ba điểm A, B, C thỏa mãn điều kiện \(\left( {\overrightarrow {CA} {\rm{ \;}} + \overrightarrow {CB} } \right).\overrightarrow {AB} {\rm{ \;}} = 0\) là: A. \(\Delta ABC\) đều. B. \(\Delta ABC\) cân tại C. C. \(\Delta ABC\) vuông tại C. D. \(\Delta ABC\) vuông cân tại C. Câu 30: Cho tam giác ABC vuông cân tại A, cạnh AC = a. Tính \(\overrightarrow {AB} .\overrightarrow {AC} \). A. \(\overrightarrow {AB} .\overrightarrow {AC} {\rm{ \;}} = \vec 0.\) B. \(\overrightarrow {AB} .\overrightarrow {AC} {\rm{ \;}} = {a^2}.\) C. \(\overrightarrow {AB} .\overrightarrow {AC} {\rm{ \;}} = 0.\) D. \(\overrightarrow {AB} .\overrightarrow {AC} {\rm{ \;}} = \sqrt 2 {a^2}.\) Phần 2: Tự luận (4 điểm) Câu 1: a) Xác định hàm số \(y = a{x^2} + bx + c\) biết đồ thị của nó có đỉnh \(I\left( {\frac{3}{2};\frac{1}{4}} \right)\) và cắt trục hoành tại điểm có hoành độ bằng \(2.\) b) Xét sự biến thiên và vẽ đồ thị hàm số tìm được. Câu 2: Cho tam giác ABC. Tìm tập hợp các điểm M thỏa mãn điều kiện \(\left| {\overrightarrow {MA} {\rm{ \;}} + \overrightarrow {MB} } \right| = \left| {\overrightarrow {MA} {\rm{ \;}} - 3\overrightarrow {MC} } \right|\). Câu 3: Cho tam giác ABC có ba cạnh là a, b, c. Chứng minh rằng \(\frac{{{a^2} + {b^2} + {c^2}}}{{2abc}} = \frac{{\cos A}}{a} + \frac{{\cos B}}{b} + \frac{{\cos C}}{c}\).
----- HẾT ----- Giải đề 7 HƯỚNG DẪN GIẢI CHI TIẾT Phần 1: Trắc nghiệm (30 câu – 6 điểm)
Câu 1 (NB): Phương pháp: Mệnh đề là câu khẳng định có tính đúng hoặc sai. Cách giải: Câu (3) không phải là mệnh đề. Chọn B. Câu 2 (TH): Phương pháp: Tìm số quy tròn a của \(\bar a = 8217,3\) đến hàng chục. Tính sai số tuyệt đối \(\Delta {\rm{ \;}} = \left| {\bar a - a} \right|\). Cách giải: Quy tròn \(\bar a = 8217,3\) đến hàng chục ta được số gần đúng \(a = 8220\). Vậy sai số tuyệt đối là: \(\Delta {\rm{ \;}} = \left| {\bar a - a} \right| = 2,7.\) Chọn D. Câu 3 (TH): Phương pháp: Sử dụng công thức trung điểm: \(\overrightarrow {AM} {\rm{ \;}} = \frac{1}{2}\left( {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} } \right)\). Cách giải: Vì M là trung điểm của BC nên \(\begin{array}{*{20}{l}}{\overrightarrow {AM} {\rm{ \;}} = \frac{1}{2}\left( {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} } \right)}\\{ \Leftrightarrow 2\overrightarrow {AM} {\rm{ \;}} = \overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} }\\{ \Leftrightarrow \overrightarrow {AC} {\rm{ \;}} = {\rm{ \;}} - \overrightarrow {AB} {\rm{ \;}} + 2\overrightarrow {AM} }\\{ \Rightarrow x = {\rm{ \;}} - 1,{\mkern 1mu} {\mkern 1mu} y = 2.}\end{array}\) Vậy cặp số (x;y) cần tìm là (-1;2). Chọn C. Câu 4 (TH): Phương pháp: Tính số HS thích học một trong hai môn. Tính số HS thích học cả hai môn = Số HS thích môn Văn + số HS thích môn Toán – số HS thích một trong hai môn. Cách giải: Số học sinh thích môn Văn hoặc Toán là: 37 – 9 = 28 (bạn). Số học sinh thích cả hai môn Văn và Toán là: (17 + 19) – 28 = 8 (bạn). Chọn B. Câu 5 (TH): Phương pháp: Giải từng bất phương trình. Lấy giao hai tập hợp nghiệm của hai bất phương trình. Cách giải: Giải từng bất phương trình: \(3x - 4 \ge 0 \Leftrightarrow x \ge \frac{4}{3} \Rightarrow {S_1} = \left[ {\frac{4}{3}; + \infty } \right)\). \(\frac{{x - 1}}{2} - x \ge {\rm{ \;}} - 2 \Leftrightarrow x - 1 - 2x \ge {\rm{ \;}} - 2x \Leftrightarrow x \ge 1 \Rightarrow {S_2} = \left[ {1; + \infty } \right).\). Vậy tập nghiệm của bất phương trình là \(S = {S_1} \cap {S_2} = \left[ {\frac{4}{3}; + \infty } \right).\) Chọn C. Câu 6 (TH): Phương pháp: Dựa vào các điểm thuộc miền nghiệm của bất phương trình. Cách giải: Thay tọa độ điểm (2;0) vào bất phương trình ta có: \(\left\{ {\begin{array}{*{20}{l}}{0 + 2 - 1 > 0}\\{2 \ge 2}\\{ - 0 + 2.2 > 3}\end{array}} \right.\) (đúng) nên điểm (0;2) thuộc miền nghiệm của hệ bất phương trình đã cho. Dựa vào các đáp án ta thấy chỉ có đáp án C thỏa mãn. Chọn C. Câu 7 (VD): Phương pháp: Áp dụng định lí cosin trong tam giác ABC tính BC: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\). Sử dụng công thức tính diện tích tam giác: \({S_{ABC}} = \frac{1}{2}AB.AC.\sin A.\) Sử dụng công thức \({S_{ABC}} = \frac{{AB.AC.BC}}{{4R}}\), từ đó suy ra R. Cách giải: Áp dụng định lí cosin trong tam giác ABC ta có: \(\begin{array}{*{20}{l}}{B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = {9^2} + {{18}^2} - 2.9.8.\cos {{60}^0} = 243}\\{ \Rightarrow BC = 9\sqrt 3 }\end{array}\) Khi đó ta có: \({S_{ABC}} = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.9.18.\sin {60^0} = \frac{{81\sqrt 3 }}{2}\). Mà \({S_{ABC}} = \frac{{AB.AC.BC}}{{4R}} \Rightarrow R = \frac{{AB.AC.BC}}{{4{S_{ABC}}}} = \frac{{9.18.9\sqrt 3 }}{{4.\frac{{81\sqrt 3 }}{2}}} = 9.\) Chọn C. Câu 8 (TH): Phương pháp: Sử dụng định lí Sin trong tam giác ABC ta có: \(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}\). Cách giải: Xét tam giác ABC ta có: C = 1800 – (A + B) = 750. Sử dụng định lí Sin trong tam giác ABC ta có: \(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}\). \( \Rightarrow AC = \frac{{AB}}{{\sin C}}.\sin B = \frac{8}{{\sin {{75}^0}}}.\sin {45^0} \approx 5,86.\) Chọn B. Câu 9 (TH): Phương pháp: Sử dụng \({\sin ^2}x + {\cos ^2}x = 1,{\mkern 1mu} {\mkern 1mu} \tan x = \frac{{\sin x}}{{\cos x}}\). Cách giải: Ta có: \(\begin{array}{*{20}{l}}{{{\tan }^2}x{{\sin }^2}x - {{\tan }^2}x + {{\sin }^2}x}\\{ = {{\tan }^2}x\left( {{{\sin }^2}x - 1} \right) + {{\sin }^2}x}\\{ = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}.\left( { - {{\cos }^2}x} \right) + {{\sin }^2}x}\\{ = {\rm{ \;}} - {{\sin }^2}x + {{\sin }^2}x = 0.}\end{array}\) Chọn B. Câu 10 (VD): Phương pháp: Sử dụng quy tắc ba điểm, phép nhân vectơ với một số. Cách giải:
\(\begin{array}{*{20}{l}}{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \overrightarrow {AB} = 2\overrightarrow {AM} = 2\left( {\overrightarrow {AN} + \overrightarrow {NC} + \overrightarrow {CM} } \right)}\\{ \Leftrightarrow \overrightarrow {AB} = 2\overrightarrow {AN} + \overrightarrow {BC} + 2\overrightarrow {CM} }\\{ \Leftrightarrow \overrightarrow {AB} = 2\overrightarrow {AN} + 2\overrightarrow {CM} + \left( {\overrightarrow {BM} - \overrightarrow {CM} } \right)}\\{ \Leftrightarrow \overrightarrow {AB} = 2\overrightarrow {AN} + 2\overrightarrow {CM} - \frac{1}{2}\overrightarrow {AB} - \overrightarrow {CM} }\\{ \Leftrightarrow \frac{3}{2}\overrightarrow {AB} = 2\overrightarrow {AN} + \overrightarrow {CM} }\\{ \Leftrightarrow \overrightarrow {AB} = \frac{4}{3}\overrightarrow {AN} + \frac{2}{3}\overrightarrow {CM} }\end{array}\) Chọn D. Câu 11 (VD): Phương pháp: Áp dụng công thức tìm độ lệch chuẩn. Cách giải: Bảng phân bố tần số:
Điểm trung bình: \(\bar x = \frac{{45.4 + 55.6 + 65.10 + 75.6 + 85.4 + 95.2}}{{32}} = 66,875\) (điểm) Phương sai: \({s^2} = \frac{1}{{32}}\left[ {4.{{\left( {45 - 66,875} \right)}^2} + 6.{{\left( {55 - 66,875} \right)}^2} + {\rm{\;}} \ldots {\rm{\;}} + 2.{{\left( {95 - 66,875} \right)}^2}} \right] \approx 190,234\) (điểm) Độ lệch chuẩn: \(s = \sqrt[{}]{{{s^2}}} = \sqrt[{}]{{190,234}} \approx 13,793\) (điểm) Chọn A. Câu 12 (TH): Phương pháp: Cho tam giác ABC trọng tâm G và điểm M bất kì, ta có \(\overrightarrow {MA} {\rm{ \;}} + \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = 3\overrightarrow {MG} .\) Cách giải: Theo bài ra ta có: \(\begin{array}{*{20}{l}}{\overrightarrow {MA} {\rm{ \;}} + \overrightarrow {MB} {\rm{ \;}} + 4\overrightarrow {MC} {\rm{ \;}} = \vec 0}\\{ \Leftrightarrow \left( {\overrightarrow {MA} {\rm{ \;}} + \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} } \right) + 3\overrightarrow {MC} {\rm{ \;}} = \vec 0}\\{ \Leftrightarrow 3\overrightarrow {MG} {\rm{ \;}} + 3\overrightarrow {MC} {\rm{ \;}} = \vec 0}\\{ \Leftrightarrow \overrightarrow {MG} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0}\end{array}\) => M là trung điểm của GC. Vậy M thuộc miền 1. Chọn A. Câu 13 (TH): Phương pháp: \(\sqrt {f(x)} \) xác định khi \(f(x) \ge 0\) \(\frac{1}{{g(x)}}\) xác định khi \(g(x) \ne 0\) Cách giải: Hàm số \(y = \frac{{\sqrt {2x + 1} }}{{3 - x}}\) xác định khi \(\left\{ \begin{array}{l}2x + 1 \ge 0\\3 - x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge - \frac{1}{2}\\x \ne 3\end{array} \right.\) Vậy tập xác định \(D = \left[ { - \frac{1}{2}; + \infty } \right)\backslash \left\{ 3 \right\}\) Chọn C. Câu 14 (TH): Phương pháp: Sử dụng định lí Sin trong tam giác: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\). Cách giải: Sử dụng định lí Sin trong tam giác ta có: \(\begin{array}{*{20}{l}}{\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R}\\{ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = \frac{{b\sin A}}{{\sin B}}}\\{\sin c = \frac{{c\sin A}}{a}}\\{a = 2R\sin A}\end{array}} \right.}\end{array}\) Suy ra A, C, D đúng. Chọn B. Câu 15 (NB): Phương pháp: Quan sát đồ thị và kết luận Cách giải: Quan sát đồ thị hàm số \(y = f\left( x \right)\) ta thấy Đồ thị kéo dài qua điểm (-3;0) và (3;0) nên tập xác định \(D \ne [ - 3;3]\) (loại B). Trên (0;3): Đồ thị đi xuống từ trái qua phải => Hàm số nghịch biến trên (0;3) (loại A) => Hàm số nghịch biến trên (1;2) vì \((1;2) \subset (0;3).\) Chọn C. Câu 16 (TH): Phương pháp: Đối với bảng phân bố tần số, phương sai được tính theo công thức: \({s^2} = \frac{1}{N}\left[ {{n_1}{{\left( {{x_1} - \bar x} \right)}^2} + {n_2}{{\left( {{x_2} - \bar x} \right)}^2} + {\rm{\;}} \ldots {\rm{\;}} + {n_k}{{\left( {{x_k} - \bar x} \right)}^2}} \right]\) Với \({n_i};{\mkern 1mu} {\mkern 1mu} {f_i}\) lần lượt là tần số, tần suất của giá trị \({x_i}\). Cách giải: Bảng phân số tần số:
*) Sản lượng trung bình của 40 thửa ruộng là: \(\bar x = \frac{{20.5 + 21.8 + 22.11 + 23.10 + 24.6}}{{40}} = 22,1{\mkern 1mu} \)(tạ) *) Phương sai: \({s^2} = \frac{1}{{40}}\left[ {5.{{\left( {20 - 22,1} \right)}^2} + 8.{{\left( {21 - 22,1} \right)}^2} + 11.{{\left( {22 - 22,1} \right)}^2} + 10.{{\left( {23 - 22,1} \right)}^2} + 6.{{\left( {24 - 22,1} \right)}^2}} \right]\)\( = 1,54\) (tạ) Chọn B. Câu 17 (TH): Cách giải: Hàm số\(y = - {x^2} + 2x - 1\) có \(a = - 1,b = 2\) Vì \(a = - 1 < 0\), nên loại C và D. Hoành độ đỉnh \( - \frac{b}{{2a}} = - \frac{2}{{2.( - 1)}} = 1\), tung độ đỉnh \(y(1) = - {1^2} + 2.1 - 1 = 0\) Chọn A. Câu 18 (NB): Phương pháp: \({C_X}Y = X\backslash Y = \{ x \in X\) và \(x \notin Y\} .\) Cách giải: Ta có: \({C_X}Y = X\backslash Y = \left\{ {3;4} \right\}.\) Chọn A. Câu 19 (NB): Phương pháp: Quan sát đồ thị Cách giải: Vì Parabol hướng bề lõm lên trên nên \(a > 0\). Đồ thị hàm số cắt \(Oy\) tại điểm \(\left( {0;c} \right)\) ở dưới \(Ox \Rightarrow c < 0\)(Loại A, B). Hoành độ đỉnh Parabol là \( - \frac{b}{{2a}} < 0\), mà \(a > 0 \Rightarrow b > 0\)(Loại C) Chọn D. Câu 20 (TH): Phương pháp: Thay trực tiếp tọa độ các điểm ở các đáp án vào hệ bất phương trình. Cách giải: Thay tọa độ điểm A(0;1) vào bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}{0 + 3.1 - 2 \ge 0}\\{2.0 + 1 + 1 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 \ge 0}\\{2 \le 0}\end{array}} \right.\) (sai) Thay tọa độ điểm C(1;3) vào bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}{1 + 3.3 - 2 \ge 0}\\{2.1 + 3 + 1 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{8 \ge 0}\\{6 \le 0}\end{array}} \right.\) (sai) Thay tọa độ điểm B(-1;1) vào bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}{ - 1 + 3.1 - 2 \ge 0}\\{2\left( { - 1} \right) + 1 + 1 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 \ge 0}\\{0 \le 0}\end{array}} \right.\) (đúng) Thay tọa độ điểm D(-1;0) vào bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}{ - 1 + 3.0 - 2 \ge 0}\\{2\left( { - 1} \right) + 0 + 1 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 3 \ge 0}\\{ - 1 \le 0}\end{array}} \right.\) (sai) Vậy điểm B(-1;1) thuộc miền nghiệm của hệ bất phương trình. Chọn C. Câu 21 (VD): Cách giải: Hàm số \(y = {x^2} - 4x + 3\) có \(a = 1 > 0,b = - 4 \Rightarrow - \frac{b}{{2a}} = - \frac{{ - 4}}{{2.1}} = 2;y(2) = - 1.\) \(y( - 1) = 8;y(4) = 3\) Ta có bảng biến thiên trên \(\left[ { - 1;4} \right]\) là:
Từ bảng biến thiên suy ra: Trên \(\left[ { - 1;4} \right]\): Giá trị lớn nhất của hàm số bằng \(8\) và giá trị nhỏ nhất của hàm số bằng \( - 1\) Tổng giá trị lớn nhất và giá trị nhỏ nhất là \(8 + \left( { - 1} \right) = 7\). Chọn C. Câu 22 (VD): Phương pháp: Chia cả tử và mẫu biểu thức P cho \cos \alpha và biểu diễn biểu thức P theo \tan \alpha . Cách giải: Vì \(\tan \alpha {\rm{ \;}} = {\rm{ \;}} - 2\) xác định nên \(\cos \alpha {\rm{ \;}} \ne 0.\) Chia cả tử và mẫu của biểu thức P cho \(\cos \alpha \) ta được: \(\begin{array}{*{20}{l}}{P = \frac{{2\sin \alpha {\rm{ \;}} + 3\cos \alpha }}{{3\sin \alpha {\rm{ \;}} - 2\cos \alpha }} = \frac{{2\frac{{\sin \alpha }}{{\cos \alpha }} + 3}}{{3\frac{{\sin \alpha }}{{\cos \alpha }} - 2}}}\\{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \frac{{2\tan \alpha {\rm{ \;}} + 3}}{{3\tan \alpha {\rm{ \;}} - 2}} = \frac{{2.\left( { - 2} \right) + 3}}{{3.\left( { - 2} \right) - 2}} = \frac{{ - 1}}{{ - 8}} = \frac{1}{8}.}\end{array}\) Chọn D. Câu 23 (TH): Phương pháp: Áp dụng quy tắc cộng vecto, quy tắc hình bình hành để biểu diễn véctơ. Cách giải:
\(\overrightarrow {BM} {\rm{\;}} = \frac{1}{2}\left( {\overrightarrow {BA} {\rm{\;}} + \overrightarrow {BC} } \right) = \frac{1}{2}\overrightarrow {BA} {\rm{\;}} + \frac{1}{2}\overrightarrow {BC} \) \( \Rightarrow \overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\overrightarrow {BM} {\rm{\;}} = \frac{2}{3} \cdot \left( {\frac{1}{2}\overrightarrow {BA} {\rm{\;}} + \frac{1}{2}\overrightarrow {BC} } \right) = \frac{1}{3}\overrightarrow {BA} {\rm{\;}} + \frac{1}{3}\overrightarrow {BC} \) Mặt khác, \(\overrightarrow {BA} {\rm{\;}} = \vec a,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BC} {\rm{\;}} = \vec b\) nên ta có: \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\) Vậy \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\). Chọn A. Câu 24 (NB): Phương pháp: Áp dụng điều kiện để hai vecto cùng phương. Điều kiện cần và đủ để ba điểm thẳng hàng. Cách giải: Theo lý thuyết, ba điểm \(A,{\mkern 1mu} {\mkern 1mu} B,{\mkern 1mu} {\mkern 1mu} C\) phân biệt thẳng hàng khi và chỉ khi tồn tại \(k\) khác \(0\) sao cho \(\overrightarrow {AB} {\rm{\;}} = k\overrightarrow {AC} \). Do vậy, khẳng định sai là: Ba điểm phân biệt \(A,B,C\) thẳng hàng khi và chỉ khi \(\overrightarrow {AB} {\rm{\; = \;}}k\overrightarrow {AC} \). Vì xảy ra trường hợp \(k = 0\), khi đó \(\overrightarrow {AB} {\rm{\;}} = k\overrightarrow {AC} {\rm{\;}} = 0.\overrightarrow {AC} {\rm{\;}} = 0\) (vô lý) Chọn D. Câu 25 (NB): Phương pháp: Dùng công thức diện tích \(S = pr = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) Cách giải: \(\begin{array}{*{20}{l}}{S = pr = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} }\\{ \Rightarrow r = \frac{{\sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} }}{p} = 1,63}\end{array}\) với \(p = \frac{{a + b + c}}{2} = 9\) Chọn A. Câu 26 (TH): Phương pháp: Tính sai số tương đối \({\delta _a} = \frac{{{\Delta _a}}}{{\left| a \right|}} \le \frac{d}{{\left| a \right|}}\) trong mỗi đáp án. Sai số tương đối càng nhỏ thì kết quả đo được càng chính xác. Cách giải: Đáp án A: \({\delta _a} \le \frac{{0,01}}{{15,34}} = 0,00065189...\) Đáp án B: \({\delta _b} \le \frac{{0,2}}{{127,4}} = 0,00156985...\) Đáp án C: \({\delta _c} \le \frac{{0,5}}{{2135,8}} = 0,00023410...\) Đáp án D: \({\delta _d} \le \frac{{0,15}}{{63,47}} = 0,00236332...\) Ta thấy \({\delta _c}\) là nhỏ nhất trong các số trên. Vậy phép đo trong ý C có kết quả chính xác nhât. Chọn C. Câu 27 (TH): Phương pháp: Khoảng tứ phân vị, kí hiệu là \({\Delta _Q}\), là hiệu số giữa tứ phân vị thứ ba và tứ phân vị thứ nhất, tức là: \({\Delta _Q} = {Q_3} - {Q_1}\) Cách giải: Cỡ mẫu là n = 10 chẵn nên giá trị tứ phân vị thứ hai là \({Q_2} = \frac{1}{2}\left( {2 + 2} \right) = 2\). Tứ phân vị thứ nhất là trung vị của mẫu 1 1 1 2 2 . Do đó \({Q_1} = 1\). Tứ phân vị thứ ba là trung vị của mẫu 2 3 3 4 20. Do đó \({Q_3} = 3\). Vậy khoảng biến thiên của mẫu số liệu là: \({\Delta _Q} = {Q_3} - {Q_1} = 3 - 1 = 2.\) Chọn A. Câu 28 (VD): Phương pháp: Parabol \(\left( P \right):y = a{x^2} + bx + c\) có đỉnh \(I\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\) và cắt Oy tại (0;c). Cách giải: Ta có (P) cắt Oy tại điểm \(M\left( {0; - 1} \right)\) suy ra \(y\left( 0 \right) = - 1 \Leftrightarrow c = - 1\) Lại có: đỉnh \(I\left( {2;0} \right) \Rightarrow \left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\a{.2^2} + b.2 + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 4a\\4a + 2b - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{4}\\b = 1\end{array} \right.\) Vậy parabol đó là \((P):y = - \frac{1}{4}{x^2} + x - 1\) Chọn C. Câu 29 (TH): Phương pháp: Sử dụng quy tắc hình bình hành. Sử dụng: hai vectơ vuông góc với nhau thì tích vô hướng bằng 0. Cách giải:
Lấy D sao cho ACBD là hình bình hành, khi đó ta có: \(\overrightarrow {CA} {\rm{ \;}} + \overrightarrow {CB} {\rm{ \;}} = \overrightarrow {CD} \). Theo bài ra ta có: \(\left( {\overrightarrow {CA} {\rm{ \;}} + \overrightarrow {CB} } \right).\overrightarrow {AB} {\rm{ \;}} = 0 \Leftrightarrow \overrightarrow {CD} .\overrightarrow {AB} {\rm{ \;}} = 0\) \( \Rightarrow CD \bot AB\). Hình bình hành ACBD có hai đường chéo vuông góc nên là hình thoi, do đó CA = CB. Vậy tam giác ABC cân tại C. Chọn B. Câu 30 (NB): Phương pháp: Sử dụng định nghĩa tích vô hướng của hai vectơ: \(\vec a.\vec b{\rm{ \;}} = \left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\). Cách giải: Vì tam giác ABC vuông cân tại A nên \(AB \bot AC\). Vậy \(\overrightarrow {AB} .\overrightarrow {AC} {\rm{ \;}} = 0.\) Chọn C. Phần 2: Tự luận (4 điểm) Câu 1 (VD): Phương pháp: Phương pháp: a) Hàm số \(y = a{x^2} + bx + c(a \ne 0)\) có đỉnh \(I\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\) b) Sự biến thiên
* Vẽ đồ thị + Đỉnh I\(\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\) + Trục đối xứng \(x = - \frac{b}{{2a}}\) + Giao với các trục (nếu có) + Lấy các điểm thuộc đồ thị (đối xứng nhau qua trục đối xứng). Cách giải: a) Ta có: Parabol cắt trục hoành tại điểm có hoành độ bằng \(2\) nên \(y(2) = 0 \Leftrightarrow 4a + 2b + c = 0\) Đồ thị của nó có đỉnh \(I\left( {\frac{3}{2};\frac{1}{4}} \right)\) nên \(\left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = \frac{3}{2}\\{\left( {\frac{3}{2}} \right)^2}a + \frac{3}{2}b + c = \frac{1}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3a + b = 0\\9a + 6b + 4c = 1\end{array} \right.\) Kết hợp, ta được hệ \(\left\{ \begin{array}{l}3a + b = 0\\9a + 6b + 4c = 1\\4a + 2b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 3\\c = - 2\end{array} \right.\) Vậy parabol đó là \(y = - {x^2} + 3x - 2\) b) Hàm số \(y = - {x^2} + 3x - 2\) có \(a = - 1 < 0\) và đỉnh là \(I\left( {\frac{3}{2};\frac{1}{4}} \right)\) Ta có bảng biến thiên:
Hàm số đồng biến trên \(( - \infty ;\frac{3}{2})\) và nghịch biến trên \((\frac{3}{2}; + \infty )\) * Vẽ đồ thị hàm số Đỉnh \(I\left( {\frac{3}{2};\frac{1}{4}} \right)\) Trục đối xứng \(x = \frac{3}{2}\) Cắt trục tung tại A(0;-2) và cắt Ox tại B(1;0) và C(2;0) Lấy D(3;-2) thuộc (P), đối xứng với A(0;-2) qua trục đối xứng
Câu 2 (VD): Phương pháp: Gọi I là trung điểm của AB, J là điểm nằm trên đường thẳng AC thỏa mãn điều kiện \(\overrightarrow {JA} = 3\overrightarrow {JC} \)\( \Leftrightarrow \overrightarrow {JA} - 3\overrightarrow {JC} = \vec 0\) Đưa đẳng thức đã cho về dạng MI = MJ, sử dụng công thức trung điểm, quy tắc ba điểm. Từ đó suy ra tập hợp điểm M. Cách giải:
Gọi I là trung điểm của AB, J là điểm nằm trên đường thẳng AC thỏa mãn điều kiện \(\overrightarrow {JA} = 3\overrightarrow {JC} \)\( \Leftrightarrow \overrightarrow {JA} - 3\overrightarrow {JC} = \vec 0\) Khi đó ta có: \(\begin{array}{*{20}{l}}{\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right| = \left| {\overrightarrow {MA} - 3\overrightarrow {MC} } \right|}\\{ \Leftrightarrow \left| {2\overrightarrow {MI} } \right| = \left| {\overrightarrow {MJ} + \overrightarrow {JA} - 3\left( {\overrightarrow {MJ} + \overrightarrow {JC} } \right)} \right|}\\{ \Leftrightarrow \left| {2\overrightarrow {MI} } \right| = \left| { - 2\overrightarrow {MJ} + \left( {\overrightarrow {JA} - 3\overrightarrow {JC} } \right)} \right|}\\{ \Leftrightarrow \left| {2\overrightarrow {MI} } \right| = \left| { - 2\overrightarrow {MJ} } \right|}\\{ \Leftrightarrow MI = MJ}\end{array}\) Vậy tập hợp các điểm M là đường trung trực của IJ. Câu 3 (VDC): Phương pháp: Sử dụng \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} + \overrightarrow {CA} {\rm{ \;}} = \vec 0\), bình phương hai vế, sử dụng khái niệm tích vô hướng của 2 vectơ. Cách giải: Ta có: \(\begin{array}{*{20}{l}}{\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = \vec 0}\\{ \Rightarrow {{\left( {\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} } \right)}^2} = 0}\\{ \Leftrightarrow {{\overrightarrow {AB} }^2} + {{\overrightarrow {BC} }^2} + {{\overrightarrow {CA} }^2} + 2\overrightarrow {AB} .\overrightarrow {BC} + 2\overrightarrow {BC} .\overrightarrow {CA} + 2\overrightarrow {CA} .\overrightarrow {AB} = 0}\\{ \Leftrightarrow {a^2} + {b^2} + {c^2} = 2\overrightarrow {BA} .\overrightarrow {BC} + 2\overrightarrow {CB} .\overrightarrow {CA} + 2\overrightarrow {AC} .\overrightarrow {AC} }\\{ \Leftrightarrow {a^2} + {b^2} + {c^2} = 2ac\cos B + 2bc\cos A + 2ab\cos C}\\{ \Leftrightarrow \frac{{{a^2} + {b^2} + {c^2}}}{{2abc}} = \frac{{\cos A}}{a} + \frac{{\cos B}}{b} + \frac{{\cos C}}{c}{\mkern 1mu} \left( {dpcm} \right).}\end{array}\) Mặt khác, theo định lí cosin trong tam giác ABC ta có: \(\begin{array}{*{20}{l}}{{a^2} = {b^2} + {c^2} - 2bc\cos A}\\{ \Leftrightarrow {a^2} = 5{a^2} - 2bc\cos A}\\{ \Leftrightarrow 2bc\cos A = 4{a^2}}\\{ \Leftrightarrow bc = \frac{{2{a^2}}}{{\cos A}} = \frac{{2{a^2}}}{{\cos \alpha }}}\end{array}\) Vậy \({S_{\Delta ABC}} = \frac{1}{2}bc\sin A = \frac{1}{2}\frac{{2{a^2}}}{{2\cos \alpha }}\sin \alpha {\rm{ \;}} = {a^2}\tan \alpha .\) Đề 8 Phần 1: Trắc nghiệm (30 câu – 6 điểm) Câu 1: Trong các câu sau, có bao nhiêu câu là mệnh đề? a) Hãy đi nhanh lên! b) Hà Nội là thủ đô của Việt Nam. c) \(5 + 7 + 4 = 15\) d) Năm 2018 là năm nhuận. A. 1 B. 2 C. 3 D. 4 Câu 2: Cho số gần đúng a = 23748023 với độ chính xác d = 123. Hãy viết số quy tròn của số a. A. 23749000. B. 23748000. C. 23746000. D. 23737000. Câu 3: Cho tam giác ABC và điểm \(M\) thỏa mãn điều kiện \(\overrightarrow {MA} {\rm{ \;}} - \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0\). Mệnh đề nào sau đây sai? A. MABC là hình bình hành. B. \(\overrightarrow {AM} {\rm{ \;}} + \overrightarrow {AB} {\rm{ \;}} = \overrightarrow {AC} \) C. \(\overrightarrow {BA} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} = \overrightarrow {BM} \) D. \(\overrightarrow {MA} {\rm{ \;}} = \overrightarrow {BC} \) Câu 4: Cho tam giác ABC có \(AB = \sqrt 5 ,{\mkern 1mu} {\mkern 1mu} AC = \sqrt 2 \) và \(\angle C = {45^0}\). Tính độ dài cạnh BC. A. \(3\) B. \(2\) C. \(\sqrt 3 \) D. \(\sqrt 2 \) Câu 5: Cặp số (x;y) nào là sau đây là một nghiệm của bất phương trình \(x--2y + 5 > 0\). A. (x;y) = (0;4). B. (x;y) = (2;5). C. (x;y) = (2;3). D. (x;y) = (1;4). Câu 6: Cho tam giác ABC và điểm \(M\) thỏa mãn điều kiện \(\overrightarrow {MA} {\rm{ \;}} - \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0\). Mệnh đề nào sau đây sai? A. MABC là hình bình hành. B. \(\overrightarrow {AM} {\rm{ \;}} + \overrightarrow {AB} {\rm{ \;}} = \overrightarrow {AC} \) C. \(\overrightarrow {BA} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} = \overrightarrow {BM} \) D. \(\overrightarrow {MA} {\rm{ \;}} = \overrightarrow {BC} \) Câu 7: Tam giác ABC có \(\angle A = {45^0},{\mkern 1mu} {\mkern 1mu} c = 6,{\mkern 1mu} {\mkern 1mu} \angle B = {75^0}\). Độ dài bán kính đường tròn ngoại tiếp tam giác bằng: A. \(8\sqrt 3 \) B. \(2\sqrt 3 \) C. \(6\sqrt 3 \) D. \(4\sqrt 3 \) Câu 8: Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{2}{{x - 1}}}&{x \in \left( { - \infty ;0} \right)}\\{\sqrt {x + 1} }&{x \in \left[ {0;2} \right]}\\{{x^2} - 1}&{x \in \left( {2;5} \right]}\end{array}} \right.\). Tính \(f\left( 4 \right).\) A. \(f\left( 4 \right) = \frac{2}{3}.\) B. \(f\left( 4 \right) = 15.\) C. \(f\left( 4 \right) = \sqrt 5 .\) D. Không tính được Câu 9: Cho hai tập hợp: \(A = \left\{ {x \in \mathbb{R}|{x^2} - 7x + 6 = 0} \right\}\)và \(B = \left\{ {x \in \mathbb{R}|\left| x \right| > 4} \right\}\). Khẳng định nào sau đây đúng? A. \(A \cup B = A\) B. \(A \cap B = A \cup B\) C. \(\left( {A\backslash B} \right) \subset A\) D. \(B\backslash A = \emptyset \) Câu 10: Cho các tập hợp A, B, C được minh họa bằng biểu đồ Ven như hình vẽ. Phần tô màu xám trong hình là biểu diễn của tập hợp nào sau đây?
A. \(A \cap B \cap C.\) B. \(\left( {A\backslash C} \right) \cup \left( {A\backslash B} \right).\) C. \(\left( {B \cup C} \right)\backslash A.\) D. \(\left( {B \cap C} \right)\backslash A.\) Câu 11: Để xác định chiều cao của một toà nhà cao tầng, một người đứng tại điểm M, sử dụng giác kế nhìn thấy đỉnh toà nhà với góc nâng \(\angle RQA = {79^0}\), người đó lùi ra xa một khoảng cách LM = 50 m thì nhìn thấy đỉnh toà nhà với góc nâng \(\angle RPA = {65^0}\). Hãy tính chiều cao của toà nhà (làm tròn đến chữ số thập phân thứ nhất), biết rằng khoảng cách từ mặt đất đến ống ngắm của giác kế đó là PL = QM = 1,4m.
A. 135,8m B. 183,5m C. 158,3m D. 185,3m Câu 12: Tập xác định \({\rm{D}}\) của hàm số \(y = \frac{{3x - 1}}{{\sqrt {2x - 2} }}\) là: A. \({\rm{D}} = \mathbb{R}\backslash \left\{ 1 \right\}.\) B. \({\rm{D}} = \mathbb{R}.\) C. \({\rm{D}} = \left( {1; + \infty } \right).\) D. \({\rm{D}} = \left[ {1; + \infty } \right).\) Câu 13: Cho hàm số \(y = - {x^2} + 4x + 1\). Khẳng định nào sau đây sai? A. Trên khoảng \(\left( { - \infty ;1} \right)\) hàm số đồng biến. B. Hàm số nghịch biến trên khoảng \(\left( {2; + \infty } \right)\) và đồng biến trên khoảng \(\left( { - \infty ;2} \right)\). C. Trên khoảng \(\left( {3; + \infty } \right)\)hàm số nghịch biến. D. Hàm số nghịch biến trên khoảng \(\left( {4; + \infty } \right)\) và đồng biến trên khoảng \(\left( { - \infty ;4} \right)\). Câu 14: Cho \(\cos \alpha {\rm{ \;}} = \frac{1}{4}\). Giá trị của \(P = \frac{{\tan \alpha {\rm{ \;}} + 2\cot \alpha }}{{2\tan \alpha {\rm{ \;}} + 3\cot \alpha }}\) là:
A. \( - \frac{{17}}{{33}}\) B. \(\frac{{17}}{{33}}\) C. \(\frac{1}{2}\) D. \(\frac{{16}}{{33}}\) Câu 15: Cho ba lực \(\overrightarrow {{F_1}} {\rm{ \;}} = \overrightarrow {MA} \), \(\overrightarrow {{F_2}} {\rm{ \;}} = \overrightarrow {MB} \), \(\overrightarrow {{F_3}} {\rm{ \;}} = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm \(M\) và vật đứng yên. Cho biết cường độ của \(\overrightarrow {{F_1}} \), \(\overrightarrow {{F_2}} \) đều bằng 50N và góc \(\widehat {AMB} = {60^^\circ }\). Khi đó cường độ lực \(\overrightarrow {{F_1}} \) của là
A. \(100\sqrt 3 N\) B. \(25\sqrt 3 N\) C. \(50\sqrt 3 N\) D. \(50\sqrt 2 N\) Câu 16: Cho ba véctơ bất kì \(\vec u,\vec v,\vec w\) bất kì. Mệnh đề nào sau đây đúng? A. \(\left| {\vec u + \vec v + \vec w} \right| \ge \left| {\vec u} \right| + \left| {\vec v} \right| + \left| {\vec w} \right|\) B. \(\left| {\vec u + \vec v} \right| \le \left| {\vec u} \right| + \left| {\vec v} \right|\) C. \(\left| {\vec u + \vec v + \vec w} \right| \ge \left| {\vec u} \right| - \left| {\vec v} \right| + \left| {\vec w} \right|\) D. \(\left| {\vec u + \vec v} \right| \le \left| {\vec u} \right| - \left| {\vec v} \right|\) Câu 17: Cho hàm số \(y = a{x^2} + bx + c\,\,(a \ne 0)\) có đồ thị. Biết đồ thị của hàm số có đỉnh \(I(1;1)\) và đi qua điểm \(A(2;3)\). Tính tổng \(S = {a^2} + {b^2} + {c^2}\) A. \(3\). B. \(4\). C. \(29\). D. \(1\). Câu 18: Nếu hàm số \(y = a{x^2} + bx + c\) có đồ thị như sau thì dấu các hệ số của nó là
A. \(a > 0;{\rm{ }}b > 0;{\rm{ }}c > 0\). B. \(a > 0;{\rm{ }}b < 0;{\rm{ }}c < 0\). C. \(a > 0;{\rm{ }}b < 0;{\rm{ }}c > 0\). D. \(a > 0;{\rm{ }}b > 0;{\rm{ }}c < 0\). Câu 19: Cho tam giác ABC vuông cân tại A có AB = 6. Giá trị của \(\overrightarrow {BA} .\overrightarrow {BC} \) bằng
A. 0. B. 36. C. -36. D. \(36\sqrt 2 .\) Câu 20: Quan sát 9 con chuột chạy quanh một căn phòng và ghi lại thời gian (tính bằng phút) của chúng trong bảng sau:
Số trung vị và Mốt của mẫu số liệu thống kê trên lần lượt là A. 5 và 9 B. 2 và 30 C. 1,5 và 1 D. 1,5 và 2 Câu 21: (ID: 590911) Đường thẳng \(2x - 3y + 6 = 0\) chia mặt phẳng tọa độ thành các miền như hình vẽ. Miền nghiệm của \(2x - 3y + 6 \ge 0\) là:
A. Nửa mặt phẳng bờ d chứa gốc tọa độ O và có lấy đường thẳng d. B. Nửa mặt phẳng bờ d chứa gốc tọa độ O và có lấy đường thẳng d. C. Nửa mặt phẳng bờ d không chứa gốc tọa độ O và không lấy đường thẳng d. D. Nửa mặt phẳng bờ d không chứa gốc tọa độ O và không lấy đường thẳng d. Câu 22: Điểm nào dưới đây thuộc miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + 2y > - 3}\\{3x - y < 5}\\{y - 1 > 0}\end{array}} \right.\). A. \(\left( { - 2; - 1} \right)\) B. \(\left( {2;0} \right)\) C. \(\left( {3;2} \right)\) D. \(\left( {0,2} \right)\) Câu 23: Giá trị của biểu thức \(B = \cos {0^0} + \cos {20^0} + \cos {40^0} + ... + \cos {160^0} + \cos {180^0}\) là A. \(0\) B. \(1\) C. \( - 1\) D. \(\frac{1}{2}\) Câu 24: Cho tam giác đều ABC có độ dài các cạnh bằng 6 và điểm M thỏa mãn \(\overrightarrow {BM} {\rm{ \;}} = {\rm{ \;}} - \frac{1}{3}\overrightarrow {BC} \). Tích vô hướng \(\overrightarrow {BM} .\overrightarrow {BA} \) bằng A. \(6\) B. \( - 6\sqrt 3 .\) C. \(6\sqrt 3 .\) D. \( - 6.\) Câu 25: Độ dài của cầu Bến Thủy 2 (Nghệ An) người ta đo được là \(996m \pm 0,5m\), có nghĩa là: A. Độ dài đúng của cầu là một số nằm trong khoảng 995,5m đến 996,5m. B. Độ dài đúng của cầu là một số lớn hơn 996m. C. Độ dài đúng của cầu là một số nhỏ hơn 996m. D. Độ dài đúng của cầu là 995,5m hoặc là 996,5m. Câu 26: Khẳng định nào dưới đây đúng về hàm số \(y = - 3{x^2} + x + 2\)? A. Hàm số đạt giá trị lớn nhất bằng \(\frac{{25}}{{12}}\) tại \(x = \frac{1}{6}\) B. Hàm số đạt giá trị nhỏ nhất bằng \(\frac{{25}}{{12}}\) tại \(x = - \frac{1}{6}\) C. Hàm số đạt giá trị lớn nhất bằng \(\frac{{25}}{3}\) D. Hàm số đạt giá trị nhỏ nhất bằng \(2\) tại \(x = \frac{1}{3}\). Câu 27: Khoảng biến thiên của mẫu số liệu 13; 16; 9; 10; 5; 8; 11; 17; 6; 20 là: A. 5. B. 8. C. 15. D. 20. Câu 28: Trong đợt hội diễn văn nghệ chào mừng 20/11, lớp 10A đăng kí hai tiết mục là múa và diễn kịch. Trong danh sách, có 9 học sinh tham gia tiết mục múa, 13 học sinh tham gia diễn kịch; trong đó có 4 học sinh tham gia cả tiết mục múa và diễn kịch. Hỏi lớp 10A có tất cả bao nhiêu học sinh tham gia hội diễn văn nghệ? A. 15. B. 18. C. 21. D. 26. Câu 29: Cho hình vuông ABCD có cạnh bằng \(a\). Khi đó \(\left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} } \right|\) bằng: A. \(\frac{{a\sqrt 5 }}{2}\) B. \(\frac{{a\sqrt 3 }}{2}\) C. \(\frac{{a\sqrt 3 }}{3}\) D. \(a\sqrt 5 \) Câu 30: Cho hai vectơ \(\vec a\) và \(\vec b\) khác \(\vec 0\). Xác định góc \(\alpha \) giữa hai vectơ \(\vec a\) và \(\vec b\) khi \(2\vec a.\vec b{\rm{ \;}} = {\rm{ \;}}\left| {\vec a} \right|.\left| {\vec b} \right|\). A. \(\alpha {\rm{ \;}} = {180^0}.\) B. \(\alpha {\rm{ \;}} = {120^0}.\) C. \(\alpha {\rm{ \;}} = {90^0}.\) D. \(\alpha {\rm{ \;}} = {60^0}.\) Phần 2: Tự luận (4 điểm) Câu 1: Cho tam giác ABC. a) Tìm điểm K sao cho \(\overrightarrow {KA} {\rm{ \;}} + 2\overrightarrow {KB} {\rm{ \;}} = \overrightarrow {CB} \). b) Tìm điểm M sao cho \(\overrightarrow {MA} {\rm{ \;}} + 2\overrightarrow {MB} {\rm{ \;}} + 2\overrightarrow {MC} {\rm{ \;}} = \vec 0\). Câu 2: Tìm parabol \(\left( P \right):y = a{x^2} + bx + c\) đi qua ba điểm \(A\left( {1;4} \right)\) và có đỉnh là \(I\left( {2;5} \right)\) Câu 3: Chứng minh rằng với mọi tam giác ABC ta có a) \(\cot A + \cot B + \cot C = \frac{{{a^2} + {b^2} + {c^2}}}{{abc}}R\) b) \(\sin \frac{A}{2} = \sqrt {\frac{{(p - b)(p - c)}}{{bc}}} \)
----- HẾT ----- Giải đề 8 HƯỚNG DẪN GIẢI CHI TIẾT Phần 1: Trắc nghiệm (30 câu – 6 điểm)
Câu 1 (NB): Phương pháp: Mệnh đề là những khẳng định có tính đúng hoặc sai. Cách giải: Câu a) là câu cảm thán không phải là mệnh đề. Các câu b, c, d là mệnh đề => Có 3 mệnh đề. Chọn C. Câu 2 (NB): Phương pháp: Cho số gần đúng a với độ chính xác d. Khi được yêu cầu làm tròn số a mà không nói rõ làm tròn đến hàng nào thì ta làm tròn số a đến hàng thấp nhất mà d nhỏ hơn 1 đơn vị của hàng đó. Cách giải: Vì độ chính xác đến hàng trăm (d = 123) nên ta làm tròn a đến hàng nghìn. Vậy số quy tròn của a là 23748000. Chọn B. Câu 3 (TH): Phương pháp: Biến đổi \(\overrightarrow {MA} {\rm{ \;}} - \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0\) về hai vectơ bằng nhau. Xác định vị trí điểm M dựa vào điều kiện vừa tìm được. Cách giải:
Ta có \(\overrightarrow {MA} {\rm{ \;}} - \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0\)\( \Leftrightarrow \overrightarrow {BA} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0{\rm{ \;}} \Leftrightarrow \overrightarrow {MC} {\rm{ \;}} = \overrightarrow {AB} \) \( \Rightarrow \) MABC là hình bình hành. Chọn A. Câu 4 (NB): Phương pháp: Sử dụng định lí cosin trong tam giác tại đỉnh C: \({c^2} = {a^2} + {b^2} - 2ab\cos C\). Cách giải: Ta có: \({c^2} = {a^2} + {b^2} - 2ab\cos C\). \(\begin{array}{*{20}{l}}{ \Rightarrow A{B^2} = B{C^2} + A{C^2} - 2BC.AC.\cos C}\\{ \Rightarrow 5 = B{C^2} + 2 - 2.BC.\sqrt 2 .\frac{{\sqrt 2 }}{2}}\\{ \Leftrightarrow B{C^2} - 2BC - 3 = 0}\\{ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{BC = 3{\mkern 1mu} {\mkern 1mu} \left( {tm} \right)}\\{BC = {\rm{ \;}} - 1{\mkern 1mu} {\mkern 1mu} \left( {ktm} \right)}\end{array}} \right.}\end{array}\) Vậy BC = 3. Chọn A. Câu 5 (NB): Phương pháp: Cặp số nào thỏa mãn bất phương trình là nghiệm của bất phương trình. Cách giải: Thay cặp số (x;y) = (0;4) vào bất phương trình: 0 – 2.4 + 5 > 0 => Sai. Thay cặp số (x;y) = (2;5) vào bất phương trình: 2 – 2. 5 + 5 > 0 => Sai. Thay cặp số (x;y) = (2;3) vào bất phương trình: 2 – 2.3 + 5 > 0 => Đúng. Thay cặp số (x;y) = (1;4) vào bất phương trình: 1 – 2.4 + 5 > 0 => Sai. Chọn C. Câu 6 (TH): Phương pháp: Biến đổi \(\overrightarrow {MA} {\rm{ \;}} - \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0\) về hai vectơ bằng nhau. Xác định vị trí điểm M dựa vào điều kiện vừa tìm được. Cách giải:
Ta có \(\overrightarrow {MA} {\rm{ \;}} - \overrightarrow {MB} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0\)\( \Leftrightarrow \overrightarrow {BA} {\rm{ \;}} + \overrightarrow {MC} {\rm{ \;}} = \vec 0{\rm{ \;}} \Leftrightarrow \overrightarrow {MC} {\rm{ \;}} = \overrightarrow {AB} \) \( \Rightarrow \) MABC là hình bình hành. Chọn A. Câu 7 (NB): Phương pháp: Tính \(\angle C = {180^0} - \left( {\angle A + \angle B} \right)\). Sử dụng định lí sin: \(\frac{c}{{\sin C}} = 2R\). Cách giải: Ta có: \(\angle C = {180^0} - \left( {\angle A + \angle B} \right) = {60^0}\). Áp dụng định lí sin ta có: \(\frac{c}{{\sin C}} = 2R \Rightarrow R = \frac{c}{{2\sin C}} = \frac{6}{{2\sin {{60}^0}}} = 2\sqrt 3 \). Chọn B. Câu 8 (NB): Phương pháp: Thay giá trị x=4 vào hàm số có công thức tương ứng. Cách giải: Ta có: \(4 \in (2;5]\) nên \(f(4) = {4^2} - 1 = 15.\) Chọn B. Câu 9 (TH): Phương pháp: Giải phương trình, bất phương trình. Xác định tập hợp \(A\), \(B\) bằng phương pháp liệt kê phần tử, đưa về cách viết khoảng, nửa khoảng. Xác định \(A \cap B\); \(A \cup B\); \(A\backslash B\); \(B\backslash A\). Cách giải: *) \({x^2} - 7x + 6 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - 1 = 0}\\{x - 6 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = 6}\end{array}} \right.\) (thỏa mãn) \( \Rightarrow A = \left\{ {1;{\mkern 1mu} {\mkern 1mu} 6} \right\}\) *) \(\left| x \right| > 4 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x < {\rm{\;}} - 4}\\{x > 4}\end{array}} \right.\)\( \Rightarrow x \in \left( { - \infty ;{\mkern 1mu} - 4} \right) \cup \left( {4;{\mkern 1mu} + \infty } \right)\) \( \Rightarrow B = \left( { - \infty ;{\mkern 1mu} - 4} \right) \cup \left( {4;{\mkern 1mu} + \infty } \right)\) Ta có: \(A \cup B = \left( { - \infty ;{\mkern 1mu} - 4} \right) \cup \left\{ 1 \right\} \cup \left( {4;{\mkern 1mu} + \infty } \right)\) , \(A \cap B = \left\{ 6 \right\}\) \(B\backslash A = \left( { - \infty ;{\mkern 1mu} - 4} \right) \cup \left( {4;{\mkern 1mu} {\mkern 1mu} 6} \right) \cup \left( {6; + \infty } \right)\), \(A\backslash B = \left\{ 1 \right\}\) Vậy đáp án đúng là: \(\left( {A\backslash B} \right) \subset A\) Chọn C. Câu 10 (TH): Phương pháp: Sử dụng khái niệm các phép toán trên tập hợp. Cách giải: Dễ thấy phần tô màu không thuộc A nên loại đáp án A, B. Phần tô màu trong hình vẽ biểu diễn cho tập hợp \(\left( {B \cap C} \right)\backslash A.\) Chọn D. Câu 11 (TH): Phương pháp: Tính PR và QR theo h = AR và \(\tan \alpha {\rm{ \;}} = \tan {65^0},{\mkern 1mu} {\mkern 1mu} \tan \beta {\rm{ \;}} = \tan {79^0}\). Sử dụng d = PQ = PR – QR, tính d. Tính chiều cao tòa nhà bằng d + RO. Cách giải: Đặt d = PQ = LM = 50m, h = AR là chiều cao từ giác kế đến đỉnh tòa nhà. Ta có: \(\angle APR = \alpha {\rm{ \;}} = {65^0},{\mkern 1mu} {\mkern 1mu} \angle AQR = \beta {\rm{ \;}} = {79^0}\). Gọi \({d_1} = PR = \frac{h}{{\tan \alpha }},{\mkern 1mu} {\mkern 1mu} {d_2} = QR = \frac{h}{{\tan \beta }}\), ta có: \(\begin{array}{*{20}{l}}{d = {d_1} - {d_2} = \frac{h}{{\tan \alpha }} - \frac{h}{{\tan \beta }} = h\left( {\frac{1}{{\tan \alpha }} - \frac{1}{{\tan \beta }}} \right)}\\{ \Rightarrow h = \frac{d}{{\frac{1}{{\tan \alpha }} - \frac{1}{{\tan \beta }}}} = \frac{{50}}{{\frac{1}{{\tan {{65}^0}}} - \frac{1}{{\tan {{79}^0}}}}} \approx 183,9{\mkern 1mu} {\mkern 1mu} \left( m \right)}\end{array}\) Vậy chiều cao của tòa nhà là AR + RO \( \approx 183,9 + 1,4 = 185,3{\mkern 1mu} {\mkern 1mu} \left( m \right)\). Chọn D. Câu 12 (TH): Phương pháp: Dùng công thức \({\sin ^2}x + {\cos ^2}x = 1\) để tính cos x Cách giải: Hàm số \(y = \frac{{3x - 1}}{{\sqrt {2x - 2} }}\) xác định khi \(\left\{ \begin{array}{l}\sqrt {2x - 2} \ne 0\\2x - 2 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\x \ge 1\end{array} \right. \Leftrightarrow x > 1\) Vậy tập xác định \({\rm{D}} = \left( {1; + \infty } \right).\) Chọn C. Câu 13 (TH): Phương pháp: Lập bảng biến thiên, suy ra các khoản đồng biến nghịch biến. Cách giải: Hàm số \(y = - {x^2} + 4x + 1\) có \(a = - 1,b = 4\) Đỉnh của parabol: \({x_I} = - \frac{b}{{2a}} = 2,{y_I} = - {2^2} + 4.2 + 1 = 5.\) Bảng biến thiên của hàm số:
Dựa vào bảng biến thiên suy ra khẳng định D sai. Chọn D. Câu 14 (TH): Phương pháp: Tìm \({\sin ^2}\alpha \) dựa vào đẳng thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) Chia cả tử và mẫu của P cho \(\sin \alpha \), tính P theo \(\cos \alpha \) và \({\sin ^2}\alpha \). Cách giải: Chia cả tử và mẫu cho \(\sin \alpha {\rm{ \;}} \ne 0\) ta được: \(\begin{array}{*{20}{l}}{P = \frac{{\tan \alpha {\rm{ \;}} + 2\cot \alpha }}{{2\tan \alpha {\rm{ \;}} + 3\cot \alpha }}}\\{P = \frac{{\frac{1}{{\cos \alpha }} + \frac{{2\cos \alpha }}{{{{\sin }^2}\alpha }}}}{{\frac{2}{{\cos \alpha }} + \frac{{3\cos \alpha }}{{{{\sin }^2}\alpha }}}}}\end{array}\) Ta có: \(\begin{array}{*{20}{l}}{{{\sin }^2}\alpha {\rm{ \;}} + {{\cos }^2}\alpha {\rm{ \;}} = 1}\\{ \Rightarrow {{\sin }^2}\alpha {\rm{ \;}} + {{\left( {\frac{1}{4}} \right)}^2} = 1}\\{ \Leftrightarrow {{\sin }^2}\alpha {\rm{ \;}} = \frac{{15}}{{16}}}\end{array}\) Khi đó: \(P = \frac{{\frac{1}{{\frac{1}{4}}} + \frac{{2.\frac{1}{4}}}{{\frac{{15}}{{16}}}}}}{{\frac{2}{{\frac{1}{4}}} + \frac{{3.\frac{1}{4}}}{{\frac{{15}}{{16}}}}}} = \frac{{\frac{{68}}{{15}}}}{{\frac{{44}}{5}}} = \frac{{17}}{{33}}\). Chọn B. Câu 15 (TH): Phương pháp: Vì vật đứng yên nên \(\overrightarrow {{F_1}} {\rm{ \;}} + \overrightarrow {{F_2}} {\rm{ \;}} + \overrightarrow {{F_3}} {\rm{ \;}} = \vec 0\). Xác định \(\left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {{F_1}} {\rm{ \;}} + \overrightarrow {{F_2}} } \right|\), dựa vào tam giác MAB đều. Cách giải:
Ta có tam giác MAB đều. Do vật đứng yên nên ta có: \(\overrightarrow {{F_1}} {\rm{ \;}} + \overrightarrow {{F_2}} {\rm{ \;}} + \overrightarrow {{F_3}} {\rm{ \;}} = \vec 0\)\( \Rightarrow \overrightarrow {{F_3}} {\rm{ \;}} = {\rm{ \;}} - (\overrightarrow {{F_1}} {\rm{ \;}} + \overrightarrow {{F_2}} )\)\( \Rightarrow \left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {{F_1}} {\rm{ \;}} + \overrightarrow {{F_2}} } \right|\) \( \Rightarrow \left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {MA} {\rm{ \;}} + \overrightarrow {MB} } \right| = \left| {\overrightarrow {ME} } \right| = 2MH = 2.50\frac{{\sqrt 3 }}{2} = 50\sqrt 3 \) (với MAEB là hình bình hành tâm \(H\)). Chọn C. Câu 16 (TH): Phương pháp: Đặt \(\overrightarrow {AB} {\rm{ \;}} = \vec u\), \(\overrightarrow {BC} {\rm{ \;}} = \vec v\) suy ra \(\vec u + \vec v = \overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} = \overrightarrow {AC} \). Xét các trường hợp A, B, C thẳng hàng; A, B, C không thẳng hàng. Ngoài ra, có thể chỉ ra các đáp án sai bằng cách chỉ ra một trường hợp mà mệnh đề đó không đúng. Cách giải: Đặt \(\overrightarrow {AB} {\rm{ \;}} = \vec u\), \(\overrightarrow {BC} {\rm{ \;}} = \vec v\) khi đó ta có \(\vec u + \vec v = \overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} = \overrightarrow {AC} \) Nếu A,B,C thẳng hàng và \(B\) nằm giữa A,C thì \(\left| {\vec u + \vec v} \right| = \left| {\vec u} \right| + \left| {\vec v} \right|\) Nếu A,B,C thẳng hàng và \(B\)không nằm giữa A,C thì \(\left| {\vec u + \vec v} \right| < \left| {\vec u} \right| + \left| {\vec v} \right|\) Nếu A,B,C không thẳng hàng thì trong tam giác ABC có \(AB + BC > AC\). Suy ra \(\left| {\vec u + \vec v} \right| < \left| {\vec u} \right| + \left| {\vec v} \right|\) Do đó \(\left| {\vec u + \vec v} \right| \le \left| {\vec u} \right| + \left| {\vec v} \right|\) Từ đó suy ra, đáp án B đúng Đáp án A, C sai vì chọn \(\vec v = \vec 0\) thì có \(\left| {\vec u + \vec w} \right| \ge \left| {\vec u} \right| + \left| {\vec w} \right|\) (sai theo chứng minh ở trên). Đáp án D sai vì chọn \(\vec u = \vec 0\) và \(\vec v \ne \vec 0\) thì có \(\left| {\vec v} \right| \le {\rm{ \;}} - \left| {\vec v} \right|\)\( \Rightarrow \) vô lý vì độ dài véctơ khác vectơ-không là một số dương. Chọn A. Câu 17 (VD): Cách giải: Hàm số có hoành độ đỉnh \({x_I} = - \frac{b}{{2a}} = 1\), tung độ đỉnh \({y_I} = a{.1^2} + b.1 + c = 1\) Điểm \(A(2;3)\) thuộc đồ thị nên \(a{.2^2} + b.2 + c = 3\) hay \(4a + 2b + c = 3\) Từ đó ta có hệ \(\left\{ {\begin{array}{*{20}{c}}{a + b + c = 1}\\{4a + 2b + c = 3}\\{ - \frac{b}{{2a}} = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a + b + c = 1}\\{4a + 2b + c = 3}\\{2a + b = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = - 4}\\{c = 3}\end{array}} \right.\) Suy ra \(S = {a^2} + {b^2} + {c^2}\)=29 Chọn C. Câu 18 (TH): Cách giải: Đồ thị hàm số có bề lõm hướng lên \( \Rightarrow a > 0\). Đồ thị hàm số cắt \(Oy\)tại điểm có tung độ âm \( \Rightarrow c < 0\). Loại A, C. Đồ thị hàm số có trục đối xứng bên trái \(Oy\): \( \Rightarrow - \frac{b}{{2a}} < 0 \Rightarrow b > 0\). Loại B. Chọn D. Câu 19 (TH): Phương pháp: Sử dụng công thức: \(\overrightarrow {BA} .\overrightarrow {BC} {\rm{ \;}} = BA.BC.\cos \angle \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right).\) Cách giải: Vì ABC là tam giác vuông cân tại A nên \(BC = AB\sqrt 2 {\rm{ \;}} = 6\sqrt 2 \) và \(\left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \angle ABC = {45^0}\). Vậy \(\overrightarrow {BA} .\overrightarrow {BC} {\rm{ \;}} = BA.BC.\cos \angle \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right)\) \( = 6.6\sqrt 2 .\cos {45^0} = 6.6\sqrt 2 .\frac{{\sqrt 2 }}{2} = 36.\) Chọn B. Câu 20 (TH): Phương pháp: - Mốt là giá trị có tần số lớn nhất trong bảng số liệu, kí hiệu là \({M_0}\) - Xác định số trung vị: Sắp xếp mẫu số liệu kích thước \(N\) theo thứ tự không giảm (tăng dần) hoặc không tăng (giảm dần): + Nếu \(N\) lẻ \( \Rightarrow {M_e} = \) số đứng thứ \(\frac{{N + 1}}{2}\) (chính giữa) + Nếu \(N\) chẵn \( \Rightarrow {M_e} = \) trung bình cộng hai số đứng giữa là \(\frac{N}{2}\) và \(\frac{N}{2} + 1\) Cách giải: Bảng phân bố tần số, sắp xếp theo thứ tự tăn dần về thời gian:
+) Vì \(x = 1\) có tần số lớn nhất \(n = 2\)\( \Rightarrow {M_0} = 1\) là Mốt của bảng số liệu trên. +) Vì \(N = 9\) (lẻ) \( \Rightarrow \) Số trung vị \({M_e} = {x_{\frac{{N + 1}}{2}}} = {x_5} = 1,5\) (phút) Chọn C. Câu 21 (NB): Phương pháp: Xét điểm gốc tọa độ để xác định miền nghiệm của bất phương trình. Cách giải: Thay \(x = 0,y = 0\) vào BPT \(2x - 3y + 6 \ge 0\) ta được: \(2.0 - 3.0 + 6 \ge 0\) (đúng) Nên O(0,0) thuộc miền nghiệm nên Miền nghiệm nửa mặt phẳng có bờ là d chứa gốc tọa độ O và có lấy đường thẳng d Chọn A. Câu 22 (NB): Phương pháp: Vẽ đồ thị hoặc thử các đáp án Cách giải: Xét hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + 2y > - 3\quad (1)}\\{3x - y < 5\quad (2)}\\{y - 1 > 0\quad (3)}\end{array}} \right.\). \(\left( { - 2; - 1} \right)\) không thỏa mãn BPT (3) \(\left( {2;0} \right)\) không thỏa mãn BPT (3) \(\left( {3;2} \right)\) không thỏa mãn BPT (2) \(\left( {0,2} \right)\)thỏa mãn cả 3 BPT nên là nghiệm của hệ. Chọn D. Câu 23 (TH): Phương pháp: Nhóm thích hợp, sử dụng mối quan hệ giá trị lượng giác của hai góc bù nhau: \(\cos \left( {{{180}^0} - \alpha } \right) = {\rm{ \;}} - \cos \alpha \). Cách giải: \(\begin{array}{*{20}{l}}{B = \cos {0^0} + \cos {{20}^0} + \cos {{40}^0} + ... + \cos {{160}^0} + \cos {{180}^0}}\\{B = \left( {\cos {0^0} + \cos {{180}^0}} \right) + \left( {\cos {{20}^0} + \cos {{160}^0}} \right) + \left( {\cos {{40}^0} + \cos {{140}^0}} \right) + ... + \left( {\cos {{80}^0} + \cos {{100}^0}} \right)}\\{B = \left( {\cos {0^0} - \cos {0^0}} \right) + \left( {\cos {{20}^0} - \cos {{20}^0}} \right) + \left( {\cos {{40}^0} - \cos {{40}^0}} \right) + ... + \left( {\cos {{80}^0} - \cos {{80}^0}} \right)}\\{B = 0}\end{array}\) Chọn A Câu 24 (TH): Phương pháp: Sử dụng công thức \(\overrightarrow {BM} .\overrightarrow {BA} {\rm{ \;}} = BM.BA.\cos \left( {\overrightarrow {BM} ,\overrightarrow {BA} } \right).\) Cách giải: Ta có: \(\overrightarrow {BM} .\overrightarrow {BA} {\rm{ \;}} = {\rm{ \;}} - \frac{1}{3}\overrightarrow {BC} .\overrightarrow {BA} {\rm{ \;}} = {\rm{ \;}} - \frac{1}{3}BC.BA.\cos \left( {\overrightarrow {BC} ,\overrightarrow {BA} } \right).\) Vì tam giác ABC đều nên \(\cos \left( {\overrightarrow {BC} ,\overrightarrow {BA} } \right) = \angle ABC = {60^0}\). \( \Rightarrow \overrightarrow {BM} .\overrightarrow {BA} = - \frac{1}{3}.6.6.\frac{{\sqrt 3 }}{2} = {\rm{ \;}} - 6\sqrt 3 .\) Chọn B. Câu 25 (NB): Phương pháp: Xác định số gần đúng a và độ chính xác d. Tính số đúng \(\bar a = a \pm d \Rightarrow a - d \le \bar a \le a + d\). Cách giải: Gọi \(\bar a\) là độ dài đúng của dây cầu \( \Rightarrow \bar a = 996m \pm 0,5m\). \(\begin{array}{*{20}{l}}{ \Rightarrow 996 - 0,5 \le \bar a \le 996 + 0,5}\\{ \Leftrightarrow 995,5 \le \bar a \le 996,5}\end{array}\) Vậy độ dài đúng của cầu là một số nằm trong khoảng 995,5m đến 996,5m. Chọn A. Câu 26 (TH): Cách giải: Ta có \(\Delta = {1^2} - 4.\left( { - 3} \right).2 = 25\) Vì \(a = - 3 < 0\) nên hàm số có giá trị lớn nhất là: \(\frac{{ - \Delta }}{{4a}} = \frac{{25}}{{12}}\). Chọn A. Câu 27 (TH): Phương pháp: Khoảng biến thiên, kí hiệu là R, là hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất trong mẫu số liệu. Cách giải: Giá trị lớn nhất trong mẫu số liệu là 20. Giá trị nhỏ nhất trong mẫu số liệu là 5. Vậy khoảng biến thiên R = 20 – 5 = 15. Chọn C. Câu 28 (VD): Phương pháp: Sử dụng công thức \(n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)\). Cách giải: Gọi A là tập hợp các bạn đăng kí tiết mục múa \( \Rightarrow n\left( A \right) = 9.\) B là tập hợp các bạn đăng kí tiết mục diễn kịch \( \Rightarrow n\left( B \right) = 13.\) \( \Rightarrow A \cap B:\) tập hợp các bạn đăng kí cả 2 tiết mục múa và diễn kịch \( \Rightarrow n\left( {A \cap B} \right) = 4.\) \(A \cup B\): tập hợp các bạn tham gia ít nhất 1 tiết mục. Ta có: \(n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)\) \( \Rightarrow \) Số học sinh lớp 10A tham gia văn nghệ là: \(n\left( {A \cup B} \right) = 9 + 13 - 4 = 18.\) Chọn B. Câu 29 (TH): Phương pháp: Gọi M là trung điểm BC. Sử dụng tính chất trung điểm. Cách giải:
Gọi \(M\) là trung điểm BC. Ta có: \(\left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} } \right| = \left| {2\overrightarrow {AM} } \right| = 2AM = 2\sqrt {A{B^2} + B{M^2}} {\rm{ \;}} = 2\sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} {\rm{ \;}} = a\sqrt 5 \). Chọn D. Câu 30 (TH): Phương pháp: Sử dụng định nghĩa tích vô hướng của hai vectơ: \(\vec a.\vec b{\rm{ \;}} = \left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\). Cách giải: Ta có: \(\begin{array}{l}\vec a.\vec b = \left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\\ \Leftrightarrow 2\vec a.\vec b = 2\left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\\ \Leftrightarrow \left| {\vec a} \right|.\left| {\vec b} \right| = 2\left| {\vec a} \right|.\left| {\vec b} \right|.\cos \left( {\vec a,\vec b} \right)\\ \Leftrightarrow \left| {\vec a} \right|.\left| {\vec b} \right|\left[ {2\cos \left( {\vec a,\vec b} \right) - 1} \right] = 0\\ \Leftrightarrow \cos \left( {\vec a,\vec b} \right) = \frac{1}{2}{\mkern 1mu} {\mkern 1mu} \left( {do{\mkern 1mu} {\mkern 1mu} \vec a \ne \vec 0,{\mkern 1mu} {\mkern 1mu} \vec b \ne \vec 0} \right)\end{array}\) \( \Leftrightarrow \left( {\vec a,\vec b} \right) = {60^0}.\) Chọn D.
Phần 2: Tự luận (4 điểm) Câu 1 (VD): Phương pháp: a) Sử dụng quy tắc hiệu, đưa về tính chất vectơ trọng tâm tam giác. b) Sử dụng tính chất vectơ trung tuyến. Cách giải: a) Ta có: \(\begin{array}{*{20}{l}}{\overrightarrow {KA} {\rm{ \;}} + 2\overrightarrow {KB} {\rm{ \;}} = \overrightarrow {CB} }\\{ \Leftrightarrow \overrightarrow {KA} {\rm{ \;}} + 2\overrightarrow {KB} {\rm{ \;}} = \overrightarrow {KB} {\rm{ \;}} - \overrightarrow {KC} }\\{ \Leftrightarrow \overrightarrow {KA} {\rm{ \;}} + \overrightarrow {KB} {\rm{ \;}} + \overrightarrow {KC} {\rm{ \;}} = \vec 0}\end{array}\) Vậy K là trọng tâm tam giác ABC. b) Gọi I là trung điểm của BC ta có: \(\begin{array}{l}\overrightarrow {MA} + 2\overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 \\ \Leftrightarrow \overrightarrow {MA} + 2\left( {\overrightarrow {MB} + \overrightarrow {MC} } \right) = \overrightarrow 0 \\ \Leftrightarrow \left( {\overrightarrow {MI} + \overrightarrow {IA} } \right) + 4\overrightarrow {MI} = \overrightarrow 0 \\ \Leftrightarrow 5\overrightarrow {MI} + \overrightarrow {IA} = 0\\ \Leftrightarrow \overrightarrow {IM} = \frac{1}{5}\overrightarrow {IA} \end{array}\) Vậy M là thuộc IA sao cho \(IM = \frac{1}{5}IA\). Câu 2 (VD): Cho \(\left( P \right):y = a{x^2} + bx + c\) đi qua ba điểm \(A\left( {1;4} \right)\) và có đỉnh là \(I\left( {2;5} \right)\). Tìm parabol và xét sự biến thiên của hàm số đó. Cách giải: Ta có \(A\left( {1;4} \right)\) và \(I\left( {2;5} \right)\) thuộc parabol nên \(\left\{ \begin{array}{l}a + b + c = 4\\4a + 2b + c = 5\end{array} \right.\) Lại có hoành độ đỉnh \({x_I} = - \frac{b}{{2a}} = 2 \Rightarrow b = - 4a\) Từ đó ta có hệ \(\left\{ \begin{array}{l}a + b + c = 4\\4a + 2b + c = 5\\b + 4a = 0\end{array} \right. \Leftrightarrow a = - 1;b = 4;c = 1\) Vậy parabol đó là \(y = - {x^2} + 4x + 1\) * Xét sự biến thiên Parabol (P) có \(a = - 1 < 0\) và đỉnh là \(I\left( {2;5} \right)\) Bảng biến thiên
Hàm số đồng biến trên \(( - \infty ;2)\) và nghịch biến trên \((2; + \infty )\). Câu 3 (VDC): Phương pháp: a) Áp dụng định lí cosin và định lí sin b) Áp dụn định lí cosin và công thức \(\cos A = 1 - 2{\sin ^2}\frac{A}{2}\) Cách giải: a) Áp dụng định lí cosin và định lí sin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\sin A = \frac{a}{{2R}}\) \( \Rightarrow \cot A = \frac{{\cos A}}{{\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}.\frac{{2R}}{a} = \frac{{{b^2} + {c^2} - {a^2}}}{{abc}}R\) Tương tự ta cũng có: \(\cot B = \frac{{{a^2} + {c^2} - {b^2}}}{{abc}}R;\cot C = \frac{{{a^2} + {b^2} - {c^2}}}{{abc}}R\) \(\begin{array}{l} \Rightarrow \cot A + \cot B + \cot C = \frac{{{b^2} + {c^2} - {a^2}}}{{abc}}R + \frac{{{a^2} + {c^2} - {b^2}}}{{abc}}R + \frac{{{a^2} + {b^2} - {c^2}}}{{abc}}R\\ = \frac{R}{{abc}}({b^2} + {c^2} - {a^2} + {a^2} + {c^2} - {b^2} + {a^2} + {b^2} - {c^2})\\ = \frac{R}{{abc}}({a^2} + {b^2} + {c^2}) = \frac{{{a^2} + {b^2} + {c^2}}}{{abc}}R\end{array}\) b) Ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\) Mà \(\cos A = 1 - 2{\sin ^2}\frac{A}{2} \Rightarrow \sin \frac{A}{2} = \sqrt {\frac{{1 - \cos A}}{2}} \) (do \({0^ \circ } < \frac{A}{2} < {90^ \circ }\)) \(\begin{array}{l} \Rightarrow \sin \frac{A}{2} = \sqrt {\frac{{1 - \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}}{2}} \\ \Leftrightarrow \sin \frac{A}{2} = \sqrt {\frac{{{a^2} - \left( {{b^2} + {c^2} - 2bc} \right)}}{{4bc}}} \\ \Leftrightarrow \sin \frac{A}{2} = \sqrt {\frac{{{a^2} - {{(b - c)}^2}}}{{4bc}}} \\ \Leftrightarrow \sin \frac{A}{2} = \sqrt {\frac{{(a - b + c)(a + b - c)}}{{4bc}}} \end{array}\) Lại có: \(p = \frac{{a + b + c}}{2}\)\( \Rightarrow p - b = \frac{{a - b + c}}{2};p - c = \frac{{a + b - c}}{2}\) \(\begin{array}{l} \Leftrightarrow \frac{{(a - b + c)(a + b - c)}}{4} = (p - b)(p - c)\\ \Leftrightarrow \sin \frac{A}{2} = \sqrt {\frac{{(p - b)(p - c)}}{{bc}}} \end{array}\) Đề 9 I. Trắc nghiệm (7 điểm) Câu 1: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \sqrt {6 - 3x} + \frac{1}{{\sqrt {x - 1} }}.\) A. \({\rm{D}} = \left[ {1;2} \right].\) B. \({\rm{D}} = \left( {1;2} \right).\) C. \({\rm{D}} = (1;2].\) D. \({\rm{D}} = \left[ { - 1;2} \right].\) Câu 2: Cho mệnh đề P(x): “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 > 0\)”. Mệnh đề phủ định của mệnh đề P(x) là A. “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 < 0\)”. B. “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 \le 0\)”. C. “\(\exists x \in \mathbb{R}\), \({x^2} + x + 1 \le 0\)”. D. “\(\exists x \in \mathbb{R}\), \({x^2} + x + 1 > 0\)”. Câu 3: Cho hàm số \(y = \frac{{\sqrt {x - 2} - 2}}{{x - 6}}\). Điểm nào sau đây thuộc đồ thị hàm số: A. \((6;0)\). B. \((2; - 0,5)\). C. \((2;0,5)\). D. \((0;6)\). Câu 4: Trong các tập hợp sau, tập hợp nào là tập hợp rỗng: A. \(A = \left\{ {x \in \mathbb{R}|\left| x \right| < 1} \right\}\) B. \(A = \left\{ {x \in \mathbb{Z}|6{x^2} - 7x + 1 = 0} \right\}\) C. \(A = \left\{ {x \in \mathbb{Z}|{x^2} - 4x + 2 = 0} \right\}\) D. \(A = \left\{ {x \in \mathbb{N}|{x^2} - 4x + 3 = 0} \right\}\) Câu 5: Cho hai tập hợp \(A = \left( { - \infty ;2} \right]\) và \(B = \left( { - 3;5} \right]\). Tìm mệnh đề sai. A. \(A \cap B = \left( { - 3;2} \right].\) B. \(A\backslash B = \left( { - \infty ; - 3} \right)\). C. \(A \cup B = \left( { - \infty ;5} \right]\). D. \(B\backslash A = \left( {2;5} \right]\). Câu 6: Cho tập hợp: \(B = \left\{ {x;{\mkern 1mu} {\mkern 1mu} y;{\mkern 1mu} {\mkern 1mu} z;{\mkern 1mu} {\mkern 1mu} 1;{\mkern 1mu} {\mkern 1mu} 5} \right\}.\) Số tập hợp con của tập hợp \(B\) là A. 29 B. 30 C. 31 D. 32 Câu 7: Hàm số \(y = a{x^2} + bx + c\), \((a > 0)\) nghịch biến trong khoảng nào sau đậy? A. \(\left( { - \infty ;\, - \frac{b}{{2a}}} \right).\) B. \(\left( { - \frac{b}{{2a}};\, + \infty } \right).\) C. \(\left( { - \frac{\Delta }{{4a}};\, + \infty } \right).\) D. \(\left( { - \infty ;\, - \frac{\Delta }{{4a}}} \right).\) Câu 8: Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn? A. \(2{x^2} + 3y > 0\) B. \({x^2} + {y^2} < 2\) C. \(x + {y^2} \ge 0\) D. \(x + y \ge 0\) Câu 9: Miền nghiệm của bất phương trình \(\left( {1 + \sqrt 3 } \right)x - \left( {1 - \sqrt 3 } \right)y \ge 2\) chứa điểm nào sau đây? A. A(1;-1) B. B(-1;-1) C. C(-1;1) D. \(D\left( { - \sqrt 3 ;\sqrt 3 } \right)\) Câu 10: (ID: 590544) Trong tam giác EFG, chọn mệnh đề đúng. A. \(E{F^2} = E{G^2} + F{G^2} + 2EG.FG.\cos G.\) B. \(E{F^2} = E{G^2} + F{G^2} + 2EG.FG.\cos E.\) C. \(E{F^2} = E{G^2} + F{G^2} - 2EG.FG.\cos E.\) D. \(E{F^2} = E{G^2} + F{G^2} - 2EG.FG.\cos G.\) Câu 11: (ID: 590545) Cho tam giác ABC biết \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \) và \(AB = 2\sqrt 2 \). Tính AC. A. \(2\sqrt 3 .\) B. \(2\sqrt 5 .\) C. \(2\sqrt 2 .\) D. \(2\sqrt 6 .\) Câu 12: (ID: 590546) Cho tam giác ABC có b = 7, c = 5, \(\cos A = \frac{3}{5}.\) Độ dài đường cao \({h_a}\) của tam giác ABC là: A. \(8.\) B. \(8\sqrt 3 .\) C. \(\frac{{7\sqrt 2 }}{2}.\) D. \(7\sqrt 2 .\) Câu 13: Hàm số bậc hai nào sau đây có đồ thị là parabol có đỉnh là \(S\left( {\frac{5}{2};\frac{1}{2}} \right)\)và đi qua \(A\left( {1; - 4} \right)\)? A. \(y = - {x^2} + 5x - 8\). B. \(y = - 2{x^2} + 10x - 12\). C. \(y = {x^2} - 5x\). D. \(y = - 2{x^2} + 5x + \frac{1}{2}\). Câu 14: Cho hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{2x - 5y - 1 > 0}\\{2x + y + 5 > 0}\\{x + y + 1 < 0}\end{array}} \right.\). Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình? A. \(O\left( {0;0} \right)\) B. \(M\left( {1;0} \right)\) C. \(N\left( {0; - 2} \right)\) D. \(P\left( {0;2} \right)\) Câu 15: Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sau
Phương trình của parabol này là A. \(y = - {x^2} + x - 1\). B. \(y = 2{x^2} + 4x + 1\). C. \(y = {x^2} - 2x - 1\). D. \(y = 2{x^2} - 4x - 1\). Câu 16: Tính bán kính r của đường tròn nội tiếp tam giác đều cạnh a. A. \(r = \frac{{a\sqrt 3 }}{4}\) B. \(r = \frac{{a\sqrt 2 }}{5}\) C. \(r = \frac{{a\sqrt 3 }}{6}\) D. \(r = \frac{{a\sqrt 5 }}{7}\) Câu 17: Tam giác ABC có \(AB = \sqrt 2 ,\,\,AC = \sqrt 3 \) và \(C = {45^0}\). Tính độ dài cạnh BC. A. \(BC = \sqrt 5 \) B. \(BC = \frac{{\sqrt 6 + \sqrt 2 }}{2}\) C. \(BC = \frac{{\sqrt 6 - \sqrt 2 }}{2}\) D. \(BC = \sqrt 6 \) Câu 18: Bảng biến thiên của hàm số \(y = - {x^2} + 2x - 1\) là: A. B. C. D.
Câu 19: Phần không bị gạch trên hình vẽ dưới đây minh họa cho tập hợp nào?
A. \(\left( { - 3; + \infty } \right).\) B. \(\left( {5; + \infty } \right).\) C. \(\{ - 3;5\} \) D. \(\left( { - 3;5} \right].\) Câu 20: Giá trị lớn nhất của hàm số \(y = - 3{x^2} + 2x + 1\) trên đoạn \(\left[ {1;3} \right]\) là: A. B. 0 C. \(\frac{1}{3}\) D. \( - 20\) Câu 21: Cho hai vectơ \(\vec a\) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 3,\) \(\left| {\overrightarrow b } \right| = 2\) và \(\vec a.\vec b = - 3.\) Xác định góc \(\alpha \) giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow b .\) A. \(\alpha = {30^0}.\) B. \(\alpha = {45^0}.\) C. \(\alpha = {60^0}.\) D. \(\alpha = {120^0}.\) Câu 22: Cho tam giác cân \(ABC\) có\(\widehat A = {120^0}\)và \(AB = AC = a\). Lấy điểm \(M\)trên cạnh \(BC\) sao cho \(BM = \frac{{2BC}}{5}\). Tính độ dài \(AM.\) A. \(\frac{{a\sqrt 3 }}{3}\) B. \(\frac{{11a}}{5}\) C. \(\frac{{a\sqrt 7 }}{5}\) D. \(\frac{{a\sqrt 6 }}{4}\) Câu 23: Nửa mặt phẳng không bị gạch chéo ở hình dưới đây là miền nghiệm của bất phương trình nào trong các bất phương trình sau?
A. \(2x - y < 3\) B. \(2x - y > 3\) C. \(x - 2y < 3\) D. \(x - 2y > 3\) Câu 24: Cho góc \(\alpha \) với \({0^0} < \alpha < {180^0}\). Tính giá trị của \(\cos \alpha \), biết \(\tan \alpha = - 2\sqrt 2 \). A. \( - \frac{1}{3}.\) B. \(\frac{1}{3}.\) C. \(\frac{{2\sqrt 2 }}{3}.\) D. \(\frac{{\sqrt 2 }}{3}.\) Câu 25: Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn cùng một điểm trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB = 40cm, \(\angle CAB = {45^0}\), \(\angle CBA = {70^0}\). Vậy sau khi đo đạc và tính toán được khoảng cách AC gần nhất với giá trị nào sau đây?
A. 53 m B. 30 m C. 41,5 m D. 41 m Câu 26: Trái đất quay một vòng quanh mặt trời là 365 ngày. Kết quả này có độ chính xác là \(\frac{1}{4}\) ngày. Sai số tương đối là: A. 0,0068%. B. 0,068%. C. 0,68%. D. 6,8%. Câu 27: Cho mẫu số liệu: 1 3 6 8 9 12. Tứ phân vị của mẫu số liệu trên là: A. Q1 = 3, Q2 = 6,5, Q3 = 9. B. Q1 = 1, Q2 = 6,5, Q3 = 12. C. Q1 = 6, Q2 = 7, Q3 = 8. D. Q1 = 3, Q2 = 7, Q3 = 9. Câu 28: Cho bốn điểm A,B,C,D phân biệt. Khi đó, \(\overrightarrow {AB} {\rm{ \;}} - \overrightarrow {DC} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} - \overrightarrow {AD} \) bằng véctơ nào sau đây? A. \(\vec 0\) B. \(\overrightarrow {BD} \) C. \(\overrightarrow {AC} \) D. \(2\overrightarrow {DC} \) Câu 29: Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng? A. \(\overrightarrow {AC} {\rm{ \;}} = \overrightarrow {BD} \) B. \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AC} {\rm{ \;}} + \overrightarrow {AD} {\rm{ \;}} = \vec 0\) C. \(\left| {\overrightarrow {AB} {\rm{ \;}} - \overrightarrow {AD} } \right| = \left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {AD} } \right|\) D. \(\left| {\overrightarrow {BC} {\rm{ \;}} + \overrightarrow {BD} } \right| = \left| {\overrightarrow {AC} {\rm{ \;}} - \overrightarrow {AB} } \right|\) Câu 30: Hãy viết số quy tròn của số gần đúng \(a = 15,318\) biết \(\bar a = 15,318 \pm 0,006.\) A. 15,3. B. 15,31. C. 15,32. D. 15,4. Câu 31: Sản lượng lúa của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng tần số sau đây: (đơn vị: tạ)
Phương sai là A. 1,24 B. 1,54 C. 22,1 D. 4,70 Câu 32: Cho tam giác ABC có trung tuyến BM và trọng tâm \(G\). Đặt \(\overrightarrow {BC} {\rm{\;}} = \vec a,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BA} {\rm{\;}} = b\). Hãy phân tích vectơ \(\overrightarrow {BG} \) theo \(\vec a\) và \(\vec b\). A. \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\) B. \(\overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\vec a + \frac{2}{3}\vec b\) C. \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{2}{3}\vec b\) D. \(\overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\vec a + \frac{1}{3}\vec b\) Câu 33: Cho hình vuông ABCD cạnh \(a\), \(M\) là điểm thay đổi. Độ dài véctơ \(\vec u = \overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {MC} {\rm{\;}} - 3\overrightarrow {MD} \) là: A. \(4a\sqrt 2 \) B. \(a\sqrt 2 \) C. \(3a\sqrt 2 \) D. \(2a\sqrt 2 \) Câu 34: Cho tam giác ABC đều cạnh a, G là trọng tâm. Mệnh đề nào sau đây sai? A. \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{1}{2}{a^2}.\) B. \(\overrightarrow {AC} .\overrightarrow {CB} = - \frac{1}{2}{a^2}.\) C. \(\overrightarrow {GA} .\overrightarrow {GB} = \frac{1}{6}{a^2}.\) D. \(\overrightarrow {AB} .\overrightarrow {AG} = \frac{1}{2}{a^2}.\) Câu 35: Cho hình chữ nhật ABCD có \(AB = a\) và \(AD = a\sqrt 2 \). Gọi K là trung điểm của cạnh AD. Tính \(\overrightarrow {BK} .\overrightarrow {AC} \) A. \(\overrightarrow {BK} .\overrightarrow {AC} = \overrightarrow 0 \) B. \(\overrightarrow {BK} .\overrightarrow {AC} = - {a^2}\sqrt 2 \) C. \(\overrightarrow {BK} .\overrightarrow {AC} = {a^2}\sqrt 2 \) D. \(\overrightarrow {BK} .\overrightarrow {AC} = 2{a^2}\)
II. Tự luận (3 điểm) Câu 1: Cho ba lực \(\overrightarrow {{F_1}} {\rm{\;}} = \overrightarrow {MA} \), \(\overrightarrow {{F_2}} {\rm{\;}} = \overrightarrow {MB} \), \(\overrightarrow {{F_3}} {\rm{\;}} = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ lực \(\overrightarrow {{F_1}} ,{\mkern 1mu} {\mkern 1mu} \overrightarrow {{F_2}} \) đều bằng 50 N và tam giác MAB vuông tại M. Tìm hướng và cường độ lực \(\overrightarrow {{F_3}} \) Câu 2: Quang ghi lại số tin nhắn điện thoại mà bạn ấy nhận được từ ngày 1/11 đến ngày 15/11 ở bảng sau:
Xác định các giá trị ngoại lệ (nếu có). Câu 3: Tìm parabol (P) \(y = a{x^2} + bx + c\) biết (P) có đỉnh \(I(2;3)\) và giao với Oy tại điểm có tung độ bằng -1. Vẽ đồ thị hàm số tìm được.
-----HẾT----- Giải đề 9 HƯỚNG DẪN GIẢI CHI TIẾT I. Trắc nghiệm (7 điểm)
Câu 1 (NB): Phương pháp:
Cách giải: Hàm số \(y = \sqrt {6 - 3x} + \frac{1}{{\sqrt {x - 1} }}\) xác định khi \(\left\{ \begin{array}{l}6 - 3x \ge 0\\x - 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\x > 1\end{array} \right. \Leftrightarrow 1 < x \le 2\) Vậy tập xác định \(D = (1;2]\) Chọn C. Câu 2 (TH): Phương pháp: Phủ định của mệnh đề “\(\forall x \in K,\,\,P\left( x \right)\)” là mệnh đề “\(\exists x \in K,\,\,\overline {P\left( x \right)} \)”. Cách giải: Mệnh đề phủ định của mệnh đề P(x): “\(\forall x \in \mathbb{R}\), \({x^2} + x + 1 > 0\)” là “\(\exists x \in \mathbb{R}\), \({x^2} + x + 1 \le 0\)”. Chọn C. Câu 3 (TH): Phương pháp: Thay tọa độ các điểm vào hàm số Cách giải: Với \(x = 6,x = 0\)thì \(y = \frac{{\sqrt {x - 2} - 2}}{{x - 6}}\) không xác định. Suy ra điểm \((6;0)\) và \((0;6)\)không thuộc đồ thị hàm số Với \(x = 2\) thì \(y = \frac{{\sqrt {2 - 2} - 2}}{{2 - 6}} = 0,5 \ne - 0,5\). Suy ra điểm \((2; - 0,5)\)không thuộc đồ thị hàm số, điểm \((2;0,5)\) thuộc đồ thị hàm số Chọn C. Câu 4 (TH): Phương pháp: Tập hợp rỗng không chứa phần tử nào. Cách giải: +) Xét đáp án A: \(\left\{ {\begin{array}{*{20}{l}}{x \in \mathbb{R}}\\{\left| x \right| < 1}\end{array}} \right. \Rightarrow {\rm{\;}} - 1 < x < 1\) \( \Rightarrow A = \left( { - 1;{\mkern 1mu} {\mkern 1mu} 1} \right) \ne \emptyset \) \( \Rightarrow \) Loại đáp án A. +) Xét đáp án B: \(6{x^2} - 7x + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = \frac{1}{6}}\end{array}} \right.\) \( \Rightarrow A = \left\{ 1 \right\} \ne \emptyset \) \( \Rightarrow \) Loại đáp án B. +) Xét đáp án C: \({x^2} - 4x + 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 2 + \sqrt 2 }\\{x = 2 - \sqrt 2 }\end{array}} \right.\) \( \Rightarrow A = \emptyset \) Chọn C. Câu 5 (VD): Phương pháp: Thực hiện các phép toán trên tập hợp. Sử dụng trục số. Cách giải: +) \(A \cap B = \left( { - 3;2} \right]\)
=> A đúng. +) \(A\backslash B = \left( { - \infty ; - 3} \right]\)
=> B sai. +) \(A \cup B = \left( { - \infty ;5} \right]\)
=> C đúng. +) \(B\backslash A = \left( {2;5} \right]\).
=> D đúng. Chọn B. Câu 6 (TH): Phương pháp: Cho tập hợp B có n phần tử. Số tập hợp con của B là \({2^n}\) Cách giải: Tập hợp \(B = \left\{ {x;{\mkern 1mu} {\mkern 1mu} y;{\mkern 1mu} {\mkern 1mu} z;{\mkern 1mu} {\mkern 1mu} 1;{\mkern 1mu} {\mkern 1mu} 5} \right\}\) có 5 phần tử. Số tập hợp con của tập B là: \({2^5} = 32\) Chọn D. Câu 7 (NB): Cách giải: Với \(a > 0\), ta có bảng biến thiên
Hàm số nghịch biến trên \(\left( { - \infty ;\, - \frac{b}{{2a}}} \right).\) Chọn A. Câu 8 (TH): Phương pháp: Bất phương trình bậc nhất hai ẩn x, y có dạng tổng quát là \(ax + by + c < 0\), \(ax + by + c > 0\), \(ax + by + c \le 0\), \(ax + by + c \ge 0\), trong đó a, b, c là các số cho trước sao cho \({a^2} + {b^2} \ne 0\). Cách giải: Bất phương trình bậc nhất hai ẩn là \(x + y \ge 0\). Chọn D. Câu 9 (TH): Phương pháp: Thay tọa độ các điểm ở các đáp án vào bất phương trình. Cách giải: Thay tọa độ điểm A(1;-1) ta có: \(\left( {1 + \sqrt 3 } \right) + \left( {1 - \sqrt 3 } \right) = 2 \ge 2\) (Đúng). Vậy điểm A thuộc miền nghiệm của bất phương trình. Chọn A. Câu 10 (NB): Phương pháp: Sử dụng định lí cosin trong tam giác: \({a^2} = {b^2} + {c^2} - 2bc.\cos A.\) Cách giải: \(E{F^2} = E{G^2} + F{G^2} - 2EG.FG.\cos G\) là mệnh đề đúng. Chọn D. Câu 11 (TH): Phương pháp: Áp dụng định lí Sin trong tam giác ABC: \(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow \frac{{\sin B}}{{\sin C}} = \frac{{AC}}{{AB}}\). Cách giải: Áp dụng định lí Sin trong tam giác ABC ta có: \(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow \frac{{\sin B}}{{\sin C}} = \frac{{AC}}{{AB}}\). Theo giả thiết \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \Rightarrow \frac{{AC}}{{AB}} = \sqrt 3 \Rightarrow AC = \sqrt 3 AB.\) Vậy \(AC = \sqrt 3 .2\sqrt 2 = 2\sqrt 6 .\) Chọn D. Câu 12 (VD): Phương pháp: Tính sinA. Tính diện tích tam giác ABC: \(S = \frac{1}{2}bc.\sin A.\) Sử dụng định lí cosin trong tam giác tính a: \({a^2} = {b^2} + {c^2} - 2bc.\cos A.\) Sử dụng công thức tính diện tích tam giác: \(S = \frac{1}{2}a{h_a}\), từ đó tính \({h_a}\). Cách giải: Ta có: \(\begin{array}{l}{\sin ^2}A + {\cos ^2}A = 1\\ \Leftrightarrow {\sin ^2}A + {\left( {\frac{3}{5}} \right)^2} = 1\\ \Leftrightarrow {\sin ^2}A = \frac{{16}}{{25}}\end{array}\) Vì \({0^0} < A < {180^0}\) nên sinA > 0 \( \Rightarrow \sin A = \frac{4}{5}.\) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A. = \frac{1}{2}.7.5.\frac{4}{5} = 14.\) Áp dụng định lí cosin trong tam giác ABC ta có: \(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A.\\\,\,\,\,\,\, = {7^2} + {5^2} - 2.7.5.\frac{3}{5}\\\,\,\,\,\,\, = 32\\ \Rightarrow a = 4\sqrt 2 .\end{array}\) Lại có: \(S = \frac{1}{2}a{h_a} \Rightarrow {h_a} = \frac{{2S}}{a} = \frac{{2.14}}{{4\sqrt 2 }} = \frac{{7\sqrt 2 }}{2}.\) Chọn C. Câu 13 (TH): Cách giải: Hàm số bậc hai cần tìm có phương trình: \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\) Hàm số bậc hai có đồ thị là parabol có đỉnh là \(S\left( {\frac{5}{2};\frac{1}{2}} \right)\)và đi qua \(A\left( {1; - 4} \right)\) \( \Rightarrow \left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = \frac{5}{2}\\a.\frac{{25}}{4} + b.\frac{5}{2} + c = \frac{1}{2}\\a + b + c = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{ - b}}{a} = 5\\25a + 10b + 2c = 2\\a + b + c = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5{\rm{a + b = 0}}\\25a + 10b + 2c = 2\\a + b + c = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 2\\b = 10\\c = - 12\end{array} \right.\) Chọn B. Câu 14 (TH): Phương pháp: Thay tọa độ các điểm vào hệ bất phương trình. Cách giải: Dễ thấy các điểm \(O\left( {0;0} \right)\), \(M\left( {1;0} \right)\), \(P\left( {0;2} \right)\) không thỏa mãn bất phương trình \(x + y + 1 < 0\) nên không thỏa mãn cả hệ bất phương trình. Chọn C. Câu 15 (TH): Cách giải: Đồ thị hàm số cắt trục tung tại điểm \(\left( {0\,\,;\,\, - 1} \right)\) nên \(c = - 1\). Tọa độ đỉnh \(I\left( {1\,\,;\, - 3} \right)\), ta có phương trình: \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 1\\a{.1^2} + b.1 - 1 = - 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}2a + b = 0\\a + b = - 2\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 4\end{array} \right.\). Vậy parabol cần tìm là: \(y = 2{x^2} - 4x - 1\).
Chọn D. Câu 16 (TH): Phương pháp: Sử dụng công thức tính diện tích tam giác \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = pr\). Cách giải: Nửa chu vi tam giác đều cạnh a là \(p = \frac{{a + a + a}}{2} = \frac{{3a}}{2}\). Tam giác đều cạnh a có diện tích \(S = \sqrt {\frac{{3a}}{2}\left( {\frac{{3a}}{2} - a} \right)\left( {\frac{{3a}}{2} - a} \right)\left( {\frac{{3a}}{2} - a} \right)} = \frac{{{a^2}\sqrt 3 }}{4}\). Lại có \(S = pr \Leftrightarrow r = \frac{S}{p} = \frac{{{a^2}\sqrt 3 }}{4}:\frac{{3a}}{2} = \frac{{a\sqrt 3 }}{6}\). Chọn C. Câu 17 (NB): Phương pháp: Sử dụng hệ quả định lí Cosin trong tam giác: \(\cos C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2AC.BC}}\). Cách giải: Áp dụng hệ quả định lí Cosin trong tam giác ABC ta có: \(\begin{array}{l}\cos C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2AC.BC}}\\ \Leftrightarrow \cos {45^0} = \frac{{{{\left( {\sqrt 3 } \right)}^2} + B{C^2} - {{\left( {\sqrt 2 } \right)}^2}}}{{2.\sqrt 3 .BC}}\\ \Leftrightarrow \sqrt 6 BC = B{C^2} + 1\\ \Leftrightarrow B{C^2} - \sqrt 6 BC + 1 = 0\\ \Leftrightarrow BC = \frac{{\sqrt 6 + \sqrt 2 }}{2}\end{array}\). Chọn B. Câu 18 (TH): Cách giải: Hàm số \(y = - {x^2} + 2x - 1\) có \(a = - 1 < 0\), nên loại C,D. Hoành độ đỉnh \({x_I} = - \frac{b}{{2a}} = - \frac{2}{{2.( - 1)}} = 1\) Chọn A. Câu 19 (NB): Phương pháp: Biểu diễn tập hợp trên trục số. Cách giải: Hình vẽ đã cho là minh họa cho tập hợp \(( - 3;5]\) Chọn D. Câu 20 (VD): Cách giải: Ta có \( - \frac{b}{{2a}} = \frac{1}{3}\) và \(a = - 3 < 0\). Suy ra hàm số đã cho nghịch biến trên khoảng \(\left( {\frac{1}{3}; + \infty } \right)\). Mà \(\left[ {1;3} \right] \subset \left( {\frac{1}{3}; + \infty } \right)\). Do đó trên đoạn \(\left[ {1;3} \right]\) hàm số đạt giá trị lớn nhất tại \(x = 1\), tức là \(\mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 1 \right) = 0\). Chọn B. Câu 21 (TH): Phương pháp: Áp dụng công thức \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\) Cách giải: Ta có \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) \Rightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{ - 3}}{{3.2}} = - \frac{1}{2}\) \( \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = {120^o}\) Chọn D. Câu 22 (VD): Phương pháp: - Tính BC dựa vào định lí côsin trong tam giác cân ABC. - Tính BM. - Tính AM dựa vào định lí côsin trong tam giác ABM. Cách giải:
\(BC = \sqrt {A{B^2} + A{C^2} - 2ABAC\cos {{120}^0}} = \sqrt {{a^2} + {a^2} - 2a.a.\left( { - \frac{1}{2}} \right)} = a\sqrt 3 {\rm{ }} \Rightarrow BM = \frac{{2a\sqrt 3 }}{5}\) \(AM = \sqrt {A{B^2} + B{M^2} - 2AB.BM.cos{{30}^0}} = \sqrt {{a^2} + {{\left( {\frac{{2a\sqrt 3 }}{5}} \right)}^2} - 2a.\frac{{2a\sqrt 3 }}{5}.\frac{{\sqrt 3 }}{2}} = \frac{{a\sqrt 7 }}{5}\). Chọn C.
Câu 23 (TH): Phương pháp: Tìm phương trình đường thẳng d. Loại đáp án. Thay tọa độ điểm O(0;0) vào các bất phương trình chưa bị loại ở các đáp án, tiếp tục loại đáp án. Cách giải: Đường thẳng d đi qua điểm (3;0) nên loại đáp án A, B. Ta thấy điểm O(0;0) không thuộc miền nghiệm của bất phương trình. + Thay tọa độ điểm O(0;0) vào biểu thức \(x - 2y\) ta có: \(0 - 2.0 = 0 < 3\) Do đó bất phươn trình cần tìm là \(x - 2y > 3\) Chọn D.
Câu 24 (TH): Phương pháp: Sử dụng công thức: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}.\) Cách giải: Ta có: \(\begin{array}{l}\,\,\,\,\,\,\,1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow 1 + {\left( { - 2\sqrt 2 } \right)^2} = \frac{1}{{{{\cos }^2}\alpha }}\\ \Leftrightarrow {\cos ^2}\alpha = \frac{1}{9}\\ \Leftrightarrow {\sin ^2}\alpha = 1 - \frac{1}{9} = \frac{8}{9}\\ \Leftrightarrow \sin \alpha = \pm \frac{{2\sqrt 2 }}{3}\end{array}\) Vì \({0^0} < \alpha < {180^0}\) \( \Rightarrow \sin \alpha > 0\). Vậy \(\sin \alpha = \frac{{2\sqrt 2 }}{3}.\) Chọn C. Câu 25 (VD): Phương pháp: Áp dụng hệ quả định lí Sin trong tam giác ABC. Cách giải: Ta có: \(\angle ACB = {180^0} - {45^0} - {70^0} = {65^0}\) Áp dụng hệ quả định lí Sin trong tam giác ABC ta có: \(\begin{array}{l}\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow \frac{{AC}}{{\sin {{70}^0}}} = \frac{{40}}{{\sin {{65}^0}}}\\ \Rightarrow AC = \frac{{40}}{{\sin {{65}^0}}}.\sin {70^0} \approx 41,47\,\,\left( m \right)\end{array}\) Chọn C. Câu 26 (TH): Phương pháp: Sai số tương đối \({\delta _a} \le \frac{d}{{\left| a \right|}}\). Cách giải: Ta có: \(d = \frac{1}{4} \Rightarrow \delta \le \frac{d}{{\left| a \right|}} = \frac{1}{{4.365}} = 0,0068\% \). Chọn A. Câu 27 (NB): Phương pháp: Để tìm các tứ phân vị của mẫu số liệu có n giá trị ta làm như sau: • Sắp xếp mẫu số liệu theo thứ tự không giảm. • Tìm trung vị. Giá trị này là Q2. • Tìm trung vị của nửa số liệu bên trái Q2 (không bao gồm Q2 nếu n lẻ). Giá trị này là Q1. • Tìm trung vị của nửa số liệu bên phải Q2 (không bao gồm Q2 nếu n lẻ). Giá trị này là Q3. Q1, Q2, Q3 được gọi là các tứ phân vị của mẫu số liệu. Cách giải: Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 6 8 9 12. Cỡ mẫu n = 6 chẵn nên \({Q_2} = \frac{{6 + 8}}{2} = 7.\) Nửa số liệu bên trái Q2: 1 3 6 => Q1 = 3. Nửa số liệu bên phải Q2: 8 9 12 => Q3 = 9. Vậy Q1 = 3, Q2 = 7, Q3 = 9. Chọn D. Câu 28 (NB): Phương pháp: Nhóm \(\overrightarrow {AB} ,\overrightarrow {BC} \); \(\overrightarrow {DC} ,\overrightarrow {AD} \), áp dụng quy tắc cộng vectơ. Cách giải: Ta có: \(\overrightarrow {AB} {\rm{ \;}} - \overrightarrow {DC} {\rm{ \;}} + \overrightarrow {BC} {\rm{ \;}} - \overrightarrow {AD} {\rm{ \;}} = \left( {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} } \right) - \left( {\overrightarrow {AD} {\rm{ \;}} + \overrightarrow {DC} } \right) = \overrightarrow {AC} {\rm{ \;}} - \overrightarrow {AC} {\rm{ \;}} = \vec 0\). Chọn A. Câu 29 (NB): Phương pháp: Sử dụng quy tắc hình bình hành tính \(\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} \). Tính độ dài vectơ vừa tìm được. Cách giải: Ta có: \(\left| {\overrightarrow {AB} {\rm{ \;}} + \overrightarrow {BC} } \right| = \left| {\overrightarrow {AC} } \right| = AC = a\). Chọn A. Câu 30 (TH): Cách giải: Ta có: \(\bar a = 15,318 \pm 0,006 \Rightarrow d = 0,006\) có chữ số khác 0 đầu tiên bên trái là ở hàng phần nghìn. Làm tròn số \(a = 15,318\) chính xác đến hàng phần trăm, kết quả là: \(15,32\) Chọn B. Câu 31 (TH): Phương pháp: Đối với bảng phân bố tần số, phương sai được tính theo công thức: \({s^2} = \frac{1}{N}\left[ {{n_1}{{\left( {{x_1} - \bar x} \right)}^2} + {n_2}{{\left( {{x_2} - \bar x} \right)}^2} + {\rm{\;}} \ldots {\rm{\;}} + {n_k}{{\left( {{x_k} - \bar x} \right)}^2}} \right]\) Với \({n_i};{\mkern 1mu} {\mkern 1mu} {f_i}\) lần lượt là tần số, tần suất của giá trị \({x_i}\). Cách giải: Bảng phân số tần số:
*) Sản lượng trung bình của 40 thửa ruộng là: \(\bar x = \frac{{20.5 + 21.8 + 22.11 + 23.10 + 24.6}}{{40}} = 22,1{\mkern 1mu} \)(tạ) *) Phương sai: \({s^2} = \frac{1}{{40}}\left[ {5.{{\left( {20 - 22,1} \right)}^2} + 8.{{\left( {21 - 22,1} \right)}^2} + 11.{{\left( {22 - 22,1} \right)}^2} + 10.{{\left( {23 - 22,1} \right)}^2} + 6.{{\left( {24 - 22,1} \right)}^2}} \right]\)\( = 1,54\) (tạ) Chọn B. Câu 32 (TH): Phương pháp: Áp dụng quy tắc cộng vecto, quy tắc hình bình hành để biểu diễn véctơ. Cách giải:
\(\overrightarrow {BM} {\rm{\;}} = \frac{1}{2}\left( {\overrightarrow {BA} {\rm{\;}} + \overrightarrow {BC} } \right) = \frac{1}{2}\overrightarrow {BA} {\rm{\;}} + \frac{1}{2}\overrightarrow {BC} \) \( \Rightarrow \overrightarrow {BG} {\rm{\;}} = \frac{2}{3}\overrightarrow {BM} {\rm{\;}} = \frac{2}{3} \cdot \left( {\frac{1}{2}\overrightarrow {BA} {\rm{\;}} + \frac{1}{2}\overrightarrow {BC} } \right) = \frac{1}{3}\overrightarrow {BA} {\rm{\;}} + \frac{1}{3}\overrightarrow {BC} \) Mặt khác, \(\overrightarrow {BA} {\rm{\;}} = \vec a,{\mkern 1mu} {\mkern 1mu} \overrightarrow {BC} {\rm{\;}} = \vec b\) nên ta có: \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\) Vậy \(\overrightarrow {BG} {\rm{\;}} = \frac{1}{3}\vec a + \frac{1}{3}\vec b\). Chọn A. Câu 33 (VD): Phương pháp: Áp dụng quy tắc cộng vecto để tìm được vecto \(\vec u\). Cách giải:
Vì ABCD là hình vuông nên ta có: \(AB = BC = CD = DA = 2\); \(AC = BD = a\sqrt 2 \). Ta có: \(\vec u = \overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {MC} {\rm{\;}} - 3\overrightarrow {MD} \) \({\mkern 1mu} = \left( {\overrightarrow {MD} {\rm{\;}} + \overrightarrow {DA} } \right) + \left( {\overrightarrow {MD} {\rm{\;}} + \overrightarrow {DB} } \right) + \left( {\overrightarrow {MD} {\rm{\;}} + \overrightarrow {DC} } \right) - 3\overrightarrow {MD} \) \({\mkern 1mu} = \overrightarrow {MD} {\rm{\;}} + \overrightarrow {DA} {\rm{\;}} + \overrightarrow {MD} {\rm{\;}} + \overrightarrow {DB} {\rm{\;}} + \overrightarrow {MD} {\rm{\;}} + \overrightarrow {DC} {\rm{\;}} - 3\overrightarrow {MD} \) \( = \overrightarrow {DA} {\rm{\;}} + \overrightarrow {DB} {\rm{\;}} + \overrightarrow {DC} \) \( = \left( {\overrightarrow {DA} {\rm{\;}} + \overrightarrow {DC} } \right) + \overrightarrow {DB} \) \( = \overrightarrow {DB} {\rm{\;}} + \overrightarrow {DB} \) \( = 2\overrightarrow {DB} \) \( \Rightarrow \vec u = 2\overrightarrow {DB} \) \( \Rightarrow \left| {\vec u} \right| = \left| {2.\overrightarrow {DB} } \right| = 2.a.\sqrt 2 {\rm{\;}} = 2\sqrt 2 a\) Chọn D. Câu 34 (VD): Phương pháp: Áp dụng tích vô hướng \(\overrightarrow a .\overrightarrow b = a.b.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\) Cách giải:
Ta có: \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = a.a.\cos A = {a^2}\cos {60^ \circ } = \frac{1}{2}{a^2}\) => A đúng \(\overrightarrow {AC} .\overrightarrow {CB} = AC.CB.\cos \left( {\overrightarrow {AC} ,\overrightarrow {CB} } \right) = a.a.\cos {120^ \circ } = - \frac{1}{2}{a^2}\) => B đúng + \(AG = \frac{2}{3}AM;AM = AC.\sin C = a.\sin {60^ \circ } = \frac{{a\sqrt 3 }}{2}\) \( \Rightarrow AG = BG = \frac{{a\sqrt 3 }}{3}\) \(\overrightarrow {GA} .\overrightarrow {GB} = GA.GB.\cos \left( {\overrightarrow {GA} ,\overrightarrow {GB} } \right) = \frac{{a\sqrt 3 }}{3}.\frac{{a\sqrt 3 }}{3}.\cos {120^ \circ } = - \frac{1}{6}{a^2}\) => C sai. \(\overrightarrow {AB} .\overrightarrow {AG} = AB.AG.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AG} } \right) = a.\frac{{a\sqrt 3 }}{3}.\cos {30^ \circ } = \frac{1}{2}{a^2}\) => D đúng.
Chọn C. Câu 35 (VD): Cách giải: Ta có: \(AC = BD = \sqrt {A{B^2} + A{D^2}} = \sqrt {2{a^2} + {a^2}} = a\sqrt 3 \) Lại có: \(\left\{ \begin{array}{l}\overrightarrow {BK} = \overrightarrow {BA} + \overrightarrow {AK} = \overrightarrow {BA} + \frac{1}{2}\overrightarrow {AD} \\\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} \end{array} \right.\) \(\begin{array}{l} \Rightarrow \overrightarrow {BK} .\overrightarrow {AC} = \left( {\overrightarrow {BA} + \frac{1}{2}\overrightarrow {AD} } \right).\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\\ = \overrightarrow {BA} .\overrightarrow {AB} + \overrightarrow {BA} .\overrightarrow {AD} + \frac{1}{2}\overrightarrow {AD} .\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} .\overrightarrow {AD} \\ = - {a^2} + 0 + 0 + \frac{1}{2}{\left( {a\sqrt 2 } \right)^2}\\ = 0\end{array}\) Chọn A.
II. Tự luận (3 điểm) Câu 1 (VD): Phương pháp: Áp dụng quy tắc hình bình hành. Vật đứng yên khi tổng các lực tác động lên điểm bằng 0. Cách giải:
Có cường độ lực \(\overrightarrow {{F_1}} ,{\mkern 1mu} {\mkern 1mu} \overrightarrow {{F_2}} \) đều bằng 50 N và tam giác MAB vuông tại M \( \Rightarrow \) Tam giác MAB vuông cân tại M Lấy điểm D sao cho MADB là hình vuông \( \Rightarrow MD = \sqrt {M{A^2} + A{D^2}} {\rm{\;}} = \sqrt {M{A^2} + M{B^2}} {\rm{\;}} = 50\sqrt 2 {\mkern 1mu} {\mkern 1mu} N\) Vì vật đứng yên nên tổng các lực tác động lên điểm bằng 0 \( \Rightarrow \overrightarrow {{F_1}} {\rm{\;}} + \overrightarrow {{F_2}} {\rm{\;}} + \overrightarrow {{F_3}} {\rm{\;}} = \vec 0\) hay \(\overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} {\rm{\;}} + \overrightarrow {{F_3}} {\rm{\;}} = \vec 0\) \( \Rightarrow \overrightarrow {{F_3}} {\rm{\;}} = {\rm{\;}} - \left( {\overrightarrow {MA} {\rm{\;}} + \overrightarrow {MB} } \right) = {\rm{\;}} - \overrightarrow {MD} \) Vậy lực \(\overrightarrow {{F_3}} \) có hướng ngược với \(\overrightarrow {MD} \) và có cường độ bằng \(50\sqrt 2 {\mkern 1mu} {\mkern 1mu} N \approx 70,71{\mkern 1mu} {\mkern 1mu} N\)
Câu 3 (VD): Phương pháp: +) Khoảng tứ phân vị, kí hiệu là ΔQ, là hiệu số giữa tứ phân vị thứ ba và tứ phân vị thứ nhất, tức là ΔQ = Q3 – Q1. +) Giá trị ngoại lệ: Giá trị ngoại lệ x thỏa mãn x > Q3 + 1,5∆Q hoặc x < Q1 − 1,5∆Q. Cách giải: Từ số liệu, ta lập bảng tần số
Cỡ mẫu \(n = 15\) nên trung vị \({Q_2} = {x_8} = 2\) \({Q_1}\) là trung vị của mẫu: 1 1 2 2 2 2 2. Do đó \({Q_1} = 2\) \({Q_3}\) là trung vị của mẫu: 3 3 3 4 4 6 30. Do đó \({Q_3} = 4\) Khi đó khoảng tứ phân vị là \({\Delta _Q}\; = {\rm{ }}{Q_3}\; - {\rm{ }}{Q_1}\; = 4--2 = 2.\) Giá trị ngoại lệ x thỏa mãn \(x > {Q_3}\; + {\rm{ }}1,5{\Delta _Q}\; = 4 + 1,5.2 = 7\) Hoặc \(x < {Q_1}\; - {\rm{ }}1,5{\Delta _Q}\; = 2 - 1,5.2 = - 1\) Vậy đối chiếu mẫu số liệu của Quang suy ra giá trị ngoại lệ là 30. Câu 3 (VD): Cách giải: Parabol (P) \(y = a{x^2} + bx + c\) giao với Oy tại điểm có tọa độ \((0;c)\), do đó \(c = - 1\) (P) có hoành độ đỉnh \({x_I} = - \frac{b}{{2a}} = 2 \Rightarrow b = - 4a\) Điểm \(I(2;3)\) thuộc (P) nên \(a{.2^2} + b.2 - 1 = 3\) hay \(4a + 2b = 4\) Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}4a + 2b = 4\\b = - 4a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 4\\a = - 1\end{array} \right.\) Vậy parabol cần tìm là \(y = - {x^2} + 4x - 1\) * Vẽ parabol Đỉnh \(I(2;3)\) Trục đối xứng \(x = 2\) Giao với Oy tại A(0;-1), lấy điểm B(4;-1) đối xứng với A qua trục đối xứng Lấy điểm C(1;2) và D(3;2) thuộc đồ thị.
Đề 10 Phần 1: Trắc nghiệm (30 câu – 6 điểm) Câu 1: Trong các câu sau, có bao nhiêu câu là không phải là mệnh đề? a) Huế là một thành phố của Việt Nam. b) Sông Hương chảy ngang qua thành phố Huế. c) Hãy trả lời câu hỏi này! d) \(5 + 19 = 24.\) e) \(6 + 81 = 25.\) f) Bạn có mang theo máy tính không? g) \(x + 2 = 11.\) A. 1. B. 2. C. 3. D. 4. Câu 2: Hãy viết số quy tròn của số gần đúng \(a = 17658\) biết \(\bar a = 17658\,\, \pm \,\,16.\) A. 17700. B. 17800. C. 17500. D. 17600. Câu 3: Cho hình bình hành \(ABCD\) có \(O\) là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai? A. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0.\) B. \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} .\) C. \(\left| {\overrightarrow {BA} + \overrightarrow {BC} } \right| = \left| {\overrightarrow {DA} + \overrightarrow {DC} } \right|.\) D. \(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AB} + \overrightarrow {CB} .\) Câu 4: Lớp 10E có \(7\) học sinh giỏi Toán, \(5\) học sinh giỏi Lý, \(6\) học sinh giỏi Hóa, \(3\) học sinh giỏi cả Toán và Lý, \(4\) học sinh giỏi cả Toán và Hóa, \(2\) học sinh giỏi cả Lý và Hóa, \(1\) học sinh giỏi cả \(3\) môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10E là A. \(9.\) B. \(10.\) C. \(18.\) D. \(28.\) Câu 5: Miền nghiệm của bất phương trình: \(3x + 2\left( {y + 3} \right) > 4\left( {x + 1} \right) - y + 3\) là nửa mặt phẳng chứa điểm: A. \(\left( {3;0} \right).\) B. \(\left( {3;1} \right).\) C. \(\left( {2;1} \right).\) D. \(\left( {0;0} \right).\) Câu 6: Phần không tô đậm trong hình vẽ dưới đây (không chứa biên), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?
A. \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \ge - 2\end{array} \right..\) B. \(\left\{ \begin{array}{l}x - 2y > 0\\x + 3y < - 2\end{array} \right..\) C. \(\left\{ \begin{array}{l}x - 2y \le 0\\x + 3y \le - 2\end{array} \right..\) D. \(\left\{ \begin{array}{l}x - 2y < 0\\x + 3y > - 2\end{array} \right..\) Câu 7: Tam giác \(ABC\) có \(AB = 3,{\rm{ }}AC = 6\) và \(\widehat A = 60^\circ \). Tính bán kính \(R\) của đường tròn ngoại tiếp tam giác \(ABC\). A. \(R = 3\). B. \(R = 3\sqrt 3 \). C. \(R = \sqrt 3 \). D. \(R = 6\). Câu 8: Hai chiếc tàu thủy cùng xuất phát từ một vị trí \(A\), đi thẳng theo hai hướng tạo với nhau góc \({60^0}\). Tàu \(B\) chạy với tốc độ \(20\) hải lí một giờ. Tàu \(C\) chạy với tốc độ \(15\) hải lí một giờ. Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí? Kết quả gần nhất với số nào sau đây? A. \(61\) hải lí. B. \(36\) hải lí. C. \(21\) hải lí. D. \(18\) hải lí. Câu 9: Tính giá trị biểu thức \(S = {\sin ^2}15^\circ + {\cos ^2}20^\circ + {\sin ^2}75^\circ + {\cos ^2}110^\circ \). A. \(S = 0.\) B. \(S = 1.\) C. \(S = 2.\) D. \(S = 4.\) Câu 10: Cho hình vuông \(ABCD\) cạnh \(a\). Tính \(P = \overrightarrow {AC} .\left( {\overrightarrow {CD} + \overrightarrow {CA} } \right).\) A. \(P = - 1.\) B. \(P = 3{a^2}.\) C. \(P = - 3{a^2}.\) D. \(P = 2{a^2}.\) Câu 11: Tìm tập xác định \({\rm{D}}\) của hàm số \(y = \sqrt {6 - 2x} - \frac{1}{{\sqrt {x + 1} }}.\) A. \({\rm{D}} = \left[ { - 1;3} \right].\) B. \({\rm{D}} = \left( { - 1;3} \right).\) C. \({\rm{D}} = ( - 1;3].\) D. \({\rm{D}} = \left[ {1;3} \right].\) Câu 12: Cho hàm số \(y = \frac{{\sqrt {x - 3} + 10}}{{x + 5}}\). Điểm nào sau đây thuộc đồ thị hàm số: A. \((7;1)\). B. \(( - 5;2)\). C. \((4;1,1)\). D. \((0;6)\). Câu 13: Gọi \(G\) là trọng tâm của \(\Delta ABC\). Đặt \(\overrightarrow {GA} {\rm{\;}} = \vec a;\overrightarrow {GB} {\rm{\;}} = \vec b\). Xác định giá trị của \(m,{\mkern 1mu} {\mkern 1mu} n\) để \(\overrightarrow {BC} {\rm{\;}} = m\vec a + n\vec b\). A. \(m = 1,{\mkern 1mu} {\mkern 1mu} n = 2\) B. \(m = {\rm{\;}} - 1,{\mkern 1mu} {\mkern 1mu} n = {\rm{\;}} - 2\) C. \(m = 2,{\mkern 1mu} {\mkern 1mu} n = 1\) D. \(m = {\rm{\;}} - 2,{\mkern 1mu} {\mkern 1mu} n = {\rm{\;}} - 1\) Câu 14: Tam giác \(ABC\) có \(AC = 4,{\rm{ }}\widehat {BAC} = 30^\circ ,{\rm{ }}\widehat {ACB} = 75^\circ \). Tính diện tích tam giác \(ABC\). A. \({S_{\Delta ABC}} = 8\). B. \({S_{\Delta ABC}} = 4\sqrt 3 \). C. \({S_{\Delta ABC}} = 4\). D. \({S_{\Delta ABC}} = 8\sqrt 3 \). Câu 15: Hàm số \(y = a{x^2} + bx + c\), \((a > 0)\) đồng biến trong khoảng nào sau đậy? A. \(\left( { - \infty ;\, - \frac{b}{{2a}}} \right).\) B. \(\left( { - \frac{b}{{2a}};\, + \infty } \right).\) C. \(\left( { - \frac{\Delta }{{4a}};\, + \infty } \right).\) D. \(\left( { - \infty ;\, - \frac{\Delta }{{4a}}} \right).\) Câu 16: Sản lượng lúa của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng tần số sau đây: (đơn vị: tạ)
Độ lệch chuẩn là A. 1,24 B. 1,54 C. 22,1 D. 4,70 Câu 17: Cho tập hợp \(A = {\rm{\{ }}x \in \mathbb{N}\left| x \right.\) là ước chung của \(36\;{\rm{v\`a }}\;{\rm{120\} }}\). Hãy liệt kê các phần tử của tập hợp \(A\). A. \(A = \left\{ {1;2;3;4;6;12} \right\}.\) B. \(A = \left\{ {1;2;4;6;8;12} \right\}.\) C. \(A = \left\{ {2;4;6;8;10;12} \right\}.\) D. \(A = \left\{ {1;36;120} \right\}.\) Câu 18: Cho hai tập hợp \(A = \left\{ {0;1;2;3;4} \right\},{\rm{ }}B = \left\{ {1;3;4;6;8} \right\}.\) Mệnh đề nào sau đây đúng? A. \(A \cap B = B.\) B. \(A \cup B = A.\) C. \(A\backslash B = \left\{ {0;2} \right\}.\) D. \(B\backslash A = \left\{ {0;4} \right\}.\) Câu 19: Điểm \(M\left( {0; - 3} \right)\) thuộc miền nghiệm của hệ bất phương trìnhnào sau đây? A. \(\left\{ \begin{array}{l}2x - y \le 3\\3x + 5y \le 1\end{array} \right..\) B. \(\left\{ \begin{array}{l}2x - y > 3\\3x + 5y \le - 3\end{array} \right..\) C. \(\left\{ \begin{array}{l}2x - y > - 3\\3x + 5y \ge 8\end{array} \right..\) D. \(\left\{ \begin{array}{l}2x - y \le - 3\\3x + 5y \ge 0\end{array} \right..\) Câu 20: Giá trị nhỏ nhất \({F_{\min }}\) của biểu thức \(F\left( {x;y} \right) = y--x\) trên miền xác định bởi hệ \(\left\{ {\begin{array}{*{20}{c}}{y - 2x \le 2}\\{2y - x \ge 4}\\{x + y \le 5}\end{array}} \right.\) là A. \({F_{\min }} = 1.\) B. \({F_{\min }} = 2.\) C. \({F_{\min }} = 3.\) D. \({F_{\min }} = 4.\) Câu 21: Hàm số bậc hai nào sau đây có đồ thị là parabol có hoành độ đỉnh là \(\frac{5}{2}\)và đi qua \(A\left( {1; - 4} \right)\)? A. \(y = {x^2} - 5x + 8\). B. \(y = 2{x^2} + 10x - 16\). C. \(y = {x^2} - 5x\). D. \(y = - 2{x^2} + 5x + 1\). Câu 22: Cho biết \(\tan \alpha = - 3.\) Giá trị của \(P = \frac{{6\sin \alpha - 7\cos \alpha }}{{6\cos \alpha + 7\sin \alpha }}\) bằng bao nhiêu? A. \(P = \frac{4}{3}.\) B. \(P = \frac{5}{3}.\) C. \(P = - \frac{4}{3}.\) D. \(P = - \frac{5}{3}.\) Câu 23: Cho tam giác ABC. Trên cạnh BC lấy điểm \(D\) sao cho \(\overrightarrow {BD} {\rm{\;}} = \frac{1}{3}\overrightarrow {BC} \). Khi đó, vectơ \(\overrightarrow {AD} \) bằng A. \(\frac{2}{3}\overrightarrow {AB} {\rm{\;}} + \frac{1}{3}\overrightarrow {AC} \) B. \(\frac{1}{3}\overrightarrow {AB} {\rm{\;}} + \frac{2}{3}\overrightarrow {AC} \) C. \(\overrightarrow {AB} {\rm{\;}} + \frac{2}{3}\overrightarrow {AC} \) D. \(\frac{5}{3}\overrightarrow {AB} {\rm{\;}} - \frac{1}{3}\overrightarrow {AC} \) Câu 24: Cho hai vecto \(\vec a,{\mkern 1mu} {\mkern 1mu} \vec b\) bất kỳ; \(\forall k,{\mkern 1mu} {\mkern 1mu} h \in \mathbb{R}\). Khẳng định nào sau đây không đúng? A. \(0.\vec a = 0\) B. \(k\left( {\vec a + \vec b} \right) = k\vec a + k\vec b\) C. \(k.\vec 0 = \vec 0\) D. \(h\left( {k\vec a} \right) = \left( {hk} \right)\vec a\) Câu 25: Tam giác \(ABC\) vuông tại \(A\) có \(AB = 6\)cm, \(BC = 10\)cm. Tính bán kính \(r\) của đường tròn nội tiếp tam giác đã cho. A. \(r = 1\) cm. B. \(r = \sqrt 2 \) cm. C. \(r = 2\) cm. D. \(r = 3\) cm. Câu 26: Một miếng đất hình chữ nhật có chiều rộng \(x = 43{\rm{m}} \pm 0,5{\rm{m}}\) và chiều dài \(y = 63{\rm{m}} \pm 0,5{\rm{m}}\). Tính chu vi \(P\) của miếng đất đã cho. A. \(P = 212{\rm{m}} \pm 4{\rm{m}}.\) B. \(P = 212{\rm{m}} \pm 2{\rm{m}}.\) C. \(P = 212{\rm{m}} \pm 0,5{\rm{m}}.\) D. \(P = 212{\rm{m}} \pm 1{\rm{m}}.\) Câu 27: Khoảng biến thiên của mẫu số liệu 1 1 1 2 2 2 3 3 4 20 là: A. 1. B. 3,9. C. 19. D. 20. Câu 28: Cho parabol \(y = a{x^2} + bx + c\) có đồ thị như hình sau
Phương trình của parabol này là A. \(y = - {x^2} + x - 1\). B. \(y = 2{x^2} + 4x + 1\). C. \(y = {x^2} - 2x - 1\). D. \(y = 2{x^2} - 4x - 1\). Câu 29: Bảng biến thiên của hàm số \(y = - {x^2} + 4x - 5\) là: A. B. C. D. Câu 30: Cho tam giác đều \(ABC\) có cạnh bằng \(a.\) Tính tích vô hướng \(\overrightarrow {AB} .\overrightarrow {BC} .\) A. \(\overrightarrow {AB} .\overrightarrow {BC} = {a^2}.\) B. \(\overrightarrow {AB} .\overrightarrow {BC} = \frac{{{a^2}\sqrt 3 }}{2}.\) C. \(\overrightarrow {AB} .\overrightarrow {BC} = - \frac{{{a^2}}}{2}.\) D. \(\overrightarrow {AB} .\overrightarrow {BC} = \frac{{{a^2}}}{2}.\) Phần 2: Tự luận (3 điểm) Câu 1: Kết quả dự báo nhiệt độ cao nhất trong 10 ngày liên tiếp ở Nghệ An cuối tháng 01 năm 2022 được cho ở bảng sau:
(Nguồn: https://nchmf.gov.vn) a) Viết mẫu số liệu thống kê nhiệt độ nhận được từ bảng trên. b) Tính số trung bình cộng, phương sai và độ lệch chuẩn của mẫu số liệu đó. Câu 2: Cho tam giác ABC. Tìm tập hợp các điểm M thỏa mãn a) \(|\overrightarrow {{\rm{MB}}} + \overrightarrow {{\rm{MC}}} | = |\overrightarrow {{\rm{MB}}} - \overrightarrow {{\rm{MC}}} |\) b) \(|2\overrightarrow {{\rm{MA}}} + 3\overrightarrow {{\rm{MB}}} | = |3\overrightarrow {{\rm{MB}}} + 2\overrightarrow {{\rm{MC}}} |\) c) \(|4\overrightarrow {{\rm{MA}}} + \overrightarrow {{\rm{MB}}} + \overrightarrow {{\rm{MC}}} | = |2\overrightarrow {{\rm{MA}}} - \overrightarrow {{\rm{MB}}} - \overrightarrow {{\rm{MC}}} |\) Câu 3: Tìm parabol (P) \(y = a{x^2} + bx + c\) biết (P) có đỉnh \(I(1; - 2)\) và giao với Oy tại điểm có tung độ bằng -1. Vẽ đồ thị hàm số tìm được. ----- HẾT ----- Giải đề 10 HƯỚNG DẪN GIẢI CHI TIẾT Phần 1: Trắc nghiệm (30 câu – 6 điểm)
Câu 1 (NB): Phương pháp: Mệnh đề là câu khẳng định có tính đúng hoặc sai. Cách giải: Các câu c), f), g) không phải là mệnh đề Chọn C. Câu 2 (TH): Cách giải: \(\bar a = 17658\,\, \pm \,\,16 \Rightarrow d = 16\) Hàng lớn nhất của d là hàng chục nên ta làm tròn số \(a = 17658\) đến hàng trăm, kết quả là: \(17700.\) Chọn A. Câu 3 (TH): Phương pháp: Sử dụng tính chất trung điểm: \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow 0 \) với O là trung điểm của AB. Sử dụng quy tắc hình bình hành \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) Cách giải: Xét các đáp án: Đáp án A. Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \left( {\overrightarrow {OA} + \overrightarrow {OC} } \right) + \left( {\overrightarrow {OB} + \overrightarrow {OD} } \right) = \vec 0.\) Đáp án B. Ta có \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) (quy tắc hình bình hành). Đáp án C. Ta có \(\left\{ \begin{array}{l}\left| {\overrightarrow {BA} + \overrightarrow {BC} } \right| = \left| {\overrightarrow {BD} } \right| = BD\\\left| {\overrightarrow {DA} + \overrightarrow {DC} } \right| = \left| {\overrightarrow {DB} } \right| = BD\end{array} \right.\). Đáp án D. Do \(\overrightarrow {CD} \ne \overrightarrow {CB} \Rightarrow \left( {\overrightarrow {AB} + \overrightarrow {CD} } \right) \ne \left( {\overrightarrow {AB} + \overrightarrow {CB} } \right).\) Chọn D. Câu 4 (TH): Cách giải: Ta dùng biểu đồ Ven để giải: Gọi A là tập hợp các học sinh giỏi Toán của lớp 10E B là tập hợp các học sinh giỏi Lý của lớp 10E C là tập hợp các học sinh giỏi Hóa của lớp 10E \( \Rightarrow n(A) = 7;n(B) = 5;n(6)\) Hơn nữa \(n(A \cap B) = 3;n(A \cap C) = 4;n(B \cap C) = 2;n(A \cap B \cap C) = 1\) Số học sinh giỏi Toán và Lý mà không giỏi Hóa là: \(3 - 1 = 2\) (học sinh) Số học sinh giỏi Toán và Hóa mà không giỏi Lý là: \(4 - 1 = 3\) (học sinh) Số học sinh giỏi Lý và Hóa mà không giỏi Toán là: \(2 - 1 = 1\) (học sinh)
Số học sinh chỉ giỏi Toán là: \(7 - 2 - 1 - 3 = 1\) (học sinh) Số học sinh chỉ giỏi Lí là: \(5 - 2 - 1 - 1 = 1\) (học sinh) Số học sinh chỉ giỏi Hóa là: \(6 - 3 - 1 - 1 = 1\) (học sinh)
Nhìn vào biểu đồ, số học sinh giỏi ít nhất \(1\) trong \(3\) môn là: \(1 + 2 + 1 + 3 + 1 + 1 + 1 = 10\) Chọn B. Câu 5 (TH): Cách giải: Ta có \(3x + 2\left( {y + 3} \right) > 4\left( {x + 1} \right) - y + 3\, \Leftrightarrow \, - x + 3y - 1 > 0\). Vì \( - 2 + 3.1 - 1 > 0\) là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ \(B\). Chọn C. Câu 6 (TH): Cách giải: Do miền nghiệm không chứa biên nên ta loại đáp án A và C. Chọn điểm \(M\left( {0;1} \right)\)thử vào các hệ bất phương trình. Xét đáp án B, ta có \(\left\{ \begin{array}{l}0 - 2.1 > 0\\0 + 3.1 < - 2\end{array} \right.\): Sai. Chọn D. Câu 7 (VD): Phương pháp: Áp dụng định lí cosin trong tam giác ABC tính BC: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\). Cách giải: Áp dụng định lí Cosin, ta có \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\) \( = {3^2} + {6^2} - 2.3.6.\cos {60^ \circ } = 27 \Leftrightarrow B{C^2} = 27 \Rightarrow B{C^2} + A{B^2} = A{C^2}.\) Suy ra tam giác ABC vuông tại B do đó bán kính \(R = \frac{{AC}}{2} = 3\) Chọn A. Câu 8 (TH): Cách giải: Sau 2 giờ tàu B đi được 40 hải lí, tàu C đi được 30 hải lí. Vậy tam giác ABC có và Áp dụng định lí côsin vào tam giác ABC ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A = {30^2} + {40^2} - 2.30.40.\cos {60^ \circ } = 900 + 1600 - 1200 = 1300\) Vậy \(BC = \sqrt {1300} \approx 36\)(hải lí). Sau 2 giờ, hai tàu cách nhau khoảng 36 hải lí. Chọn B. Câu 9 (TH): Phương pháp: Sử dụng \({\sin ^2}x + {\cos ^2}x = 1,{\mkern 1mu} {\mkern 1mu} \tan x = \frac{{\sin x}}{{\cos x}}\). Cách giải: Hai góc \(15^o\) và \(75^o\) phụ nhau nên \(\sin 75^o =\cos 15^o\) Hai góc \(20^o\) và \(110^o\) hơn kém nhau \(90^o\) nên \(\sin 20^o =-\cos 110^o\) Do đó, \(\begin{array}{l}S = {\sin ^2}{15^ \circ } + {\cos ^2}{20^ \circ } + {\sin ^2}{75^ \circ } + {\cos ^2}{110^ \circ }\\ = {\sin ^2}{15^ \circ } + {\cos ^2}{20^ \circ } + {\cos ^2}{15^ \circ } + {\left( { - \sin {{20}^ \circ }} \right)^2}\\ = {\sin ^2}{15^ \circ } + {\cos ^2}{15^ \circ } + {\cos ^2}{20^ \circ } + \sin {20^ \circ }^2\\ = 2\end{array}\) Chọn C. Câu 10 (VD): Phương pháp: Sử dụng quy tắc ba điểm, phép nhân vectơ với một số. Cách giải: Từ giả thiết suy ra \(AC = a\sqrt 2 \) Ta có \(P = \overrightarrow {AC} .\left( {\overrightarrow {CD} + \overrightarrow {CA} } \right) = \overrightarrow {AC} .\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {CA} = - \overrightarrow {CA} .\overrightarrow {CD} - {\overrightarrow {AC} ^2}\) \( = - CA.CD.\cos \left( {\overrightarrow {CA} ,\overrightarrow {CD} } \right) - A{C^2} = - a\sqrt 2 .a.\cos {45^ \circ } - {\left( {a\sqrt 2 } \right)^2} = - 3{a^2}\) Chọn C. Câu 11 (TH): Phương pháp:
Cách giải: Hàm số \(y = \sqrt {6 - 2x} - \frac{1}{{\sqrt {x + 1} }}\) xác định khi \(\left\{ \begin{array}{l}6 - 2x \ge 0\\x + 1 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 3\\x > - 1\end{array} \right. \Leftrightarrow - 1 < x \le 3\) Vậy tập xác định \(D = ( - 1;3]\) Chọn C. Câu 12 (TH): Phương pháp: Thay tọa độ các điểm vào hàm số Cách giải: Với \(x = - 5,x = 0\)thì \(y = \frac{{\sqrt {x - 3} + 10}}{{x + 5}}\) không xác định. Suy ra điểm \(( - 5;2)\) và \((0;6)\)không thuộc đồ thị hàm số Với \(x = 4\) thì \(y = \frac{{\sqrt {4 - 3} + 10}}{{4 + 5}} = \frac{{11}}{9} \ne 1,1\). Suy ra điểm \((4;1,1)\)không thuộc đồ thị hàm số.
Với \(x = 7\) thì \(y = \frac{{\sqrt {7 - 3} + 10}}{{7 + 5}} = 1\). Suy ra điểm \((7;1)\) thuộc đồ thị hàm số. Chọn A. Câu 13 (TH): Phương pháp: Áp dụng phương pháp phân tích một vecto theo hai vecto cùng phương. Tính chất trọng tâm của tam giác. Cách giải:
Vì \(G\) là trọng tâm của \(\Delta ABC\) nên \(\overrightarrow {GA} {\rm{\;}} + \overrightarrow {GB} {\rm{\;}} + \overrightarrow {GC} {\rm{\;}} = \vec 0\)\( \Rightarrow \overrightarrow {GC} {\rm{\;}} = {\rm{\;}} - \overrightarrow {GA} {\rm{\;}} - \overrightarrow {GB} \) . Ta có: \(\overrightarrow {BC} {\rm{\;}} = \overrightarrow {BG} {\rm{\;}} + \overrightarrow {GC} \)\( \Rightarrow \overrightarrow {BC} {\rm{\;}} = {\rm{\;}} - \overrightarrow {GB} {\rm{\;}} + \overrightarrow {GC} \) \( \Rightarrow \overrightarrow {BC} {\rm{\;}} = {\rm{\;}} - \overrightarrow {GA} {\rm{\;}} - 2\overrightarrow {GB} {\rm{\;}} = {\rm{\;}} - \vec a - 2\vec b\)\( = {\rm{\;}} - \overrightarrow {GB} {\rm{\;}} - \overrightarrow {GA} {\rm{\;}} - \overrightarrow {GB} \) \( = {\rm{\;}} - \overrightarrow {GA} {\rm{\;}} - 2\overrightarrow {GB} \) Mà \(\overrightarrow {BC} {\rm{\;}} = m\vec a + n\vec b\) suy ra \(m = {\rm{\;}} - 1,{\mkern 1mu} {\mkern 1mu} n = {\rm{\;}} - 2\). Chọn B. Câu 14 (TH): Cách giải: Ta có \(\widehat {ABC} = {180^ \circ } - \left( {\widehat {BAC} + \widehat {ACB}} \right) = {75^ \circ } = \widehat {ACB}\) Suy ra tam giác ABC cân tại A nên AB=AC=4. Diện tích tam giác ABC là \({S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = 4\) Chọn C. Câu 15 (NB): Cách giải: Với \(a > 0\), ta có bảng biến thiên
Hàm số đồng biến trên \(\left( { - \frac{b}{{2a}}; + \infty } \right).\) Chọn B. Câu 16 (TH): Phương pháp: Đối với bảng phân bố tần số, phương sai được tính theo công thức: \({s^2} = \frac{1}{N}\left[ {{n_1}{{\left( {{x_1} - \bar x} \right)}^2} + {n_2}{{\left( {{x_2} - \bar x} \right)}^2} + {\rm{\;}} \ldots {\rm{\;}} + {n_k}{{\left( {{x_k} - \bar x} \right)}^2}} \right]\) Với \({n_i};{\mkern 1mu} {\mkern 1mu} {f_i}\) lần lượt là tần số, tần suất của giá trị \({x_i}\). Cách giải: Bảng phân số tần số:
*) Sản lượng trung bình của 40 thửa ruộng là: \(\bar x = \frac{{20.5 + 21.8 + 22.11 + 23.10 + 24.6}}{{40}} = 22,1{\mkern 1mu} \)(tạ) *) Phương sai: \({s^2} = \frac{1}{{40}}\left[ {5.{{\left( {20 - 22,1} \right)}^2} + 8.{{\left( {21 - 22,1} \right)}^2} + 11.{{\left( {22 - 22,1} \right)}^2} + 10.{{\left( {23 - 22,1} \right)}^2} + 6.{{\left( {24 - 22,1} \right)}^2}} \right]\)\( = 1,54\) (tạ) *) Độ lệch chuẩn \(s = \sqrt {1,54} \approx 1,24\) Chọn A. Câu 17 (NB): Phương pháp: Liệt kê các ước chung của 36 và 120. Cách giải: Ta có \(\left\{ \begin{array}{l}36 = {2^2}{.3^2}\\120 = {2^3}.3.5\end{array} \right.\). Do đó \(A = \left\{ {1;2;3;4;6;12} \right\}\). Chọn A. Câu 18 (NB): Phương pháp: \(A \cap B = \{ x \in A\) và \(x \in B\} .\) \(A \cup B = \{ x \in A\) hoặc \(x \in B\} .\) \(A\backslash B = \{ x \in A\) và \(x \notin B\} .\) Cách giải: Ta có: \(A = \left\{ {0;1;2;3;4} \right\},{\rm{ }}B = \left\{ {1;3;4;6;8} \right\}.\) \(A \cap B = \{ 1;3;4\} \ne B.\) \(A \cup B = \{ 0;1;2;3;4;6;8\} \ne A.\) \(A\backslash B = \left\{ {0;2} \right\}.\) \(B\backslash A = \{ 6;8\} \ne \left\{ {0;4} \right\}.\) Chọn C. Câu 19 (NB): Phương pháp: Thay tọa độ điểm M vào từng hệ bất phương trình. Cách giải: Thay tọa độ \(M\left( {0; - 3} \right)\) vào biểu thức \(2x - y\)ta được: \(2.0 - ( - 3) = 3\) \( \Rightarrow \)Loại B, D. Thay tọa độ \(M\left( {0; - 3} \right)\) vào biểu thức \(3x + 5y\)ta được: \(3.0 + 5.( - 3) = - 15\) \( \Rightarrow \)Loại C Chọn A. Câu 20 (TH): Phương pháp: Bước 1. Biểu diễn miền nghiệm của hệ BPT Bước 2. Xác định tọa độ đỉnh của miền nghiệm Bước 3. Tính giá trị của F tại các đỉnh. KL giá trị nhỏ nhất. Cách giải: Ta có \(\left\{ {\begin{array}{*{20}{c}}{y - 2x \le 2}\\{2y - x \ge 4}\\{x + y \le 5}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y - 2x - 2 \le 0}\\{2y - x - 4 \ge 0}\\{x + y - 5 \le 0}\end{array}} \right..\) \(\left( * \right)\) Trong mặt phẳng tọa độ \(Oxy,\)vẽ các đường thẳng \(\begin{array}{l}{d_1}:y - 2x - 2 = 0,\,\,{\rm{ }}{d_2}:2y - x - 4 = 0,{\rm{ }}\\{\rm{ }}{d_3}:x + y - 5 = 0.\end{array}\) Khi đó miền nghiệm của hệ bất phương trình \(\left( * \right)\) là phần mặt phẳng (tam giác \(ABC\) kể cả biên) tô màu như hình vẽ.
Xét các đỉnh của miền khép kín tạo bởi hệ \(\left( * \right)\) là \(A\left( {0;2} \right),{\rm{ }}B\left( {2;3} \right),{\rm{ }}C\left( {1;4} \right).\) Ta có \(\left\{ \begin{array}{l}F\left( {0;2} \right) = 2\\F\left( {2;3} \right) = 1\\F\left( {1;4} \right) = 3\end{array} \right. \Rightarrow {\rm{ }}{F_{\min }} = 1{\rm{ }}{\rm{.}}\) Chọn A. Câu 21 (TH): Cách giải: Hàm số bậc hai cần tìm có phương trình: \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\) Đồ thị là parabol có hoành độ đỉnh là \(\frac{5}{2}\)và đi qua \(A\left( {1; - 4} \right)\) \( \Rightarrow \left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = \frac{5}{2}\\a + b + c = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{ - b}}{a} = 5\\a + b + c = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 5a\\a + b + c = - 4\end{array} \right.\) \(A\left( {1; - 4} \right)\) không thuộc hàm số \(y = {x^2} - 5x + 8\)=> Loại A. Hàm số \(y = 2{x^2} + 10x - 16\) có \(b = 10,a = 2 \Rightarrow b \ne - 5a\) => Loại B Hàm số \(y = {x^2} - 5x\) có \(b = - 5,a = 1 \Rightarrow b = - 5a\), đi qua \(A\left( {1; - 4} \right)\) (TM) Hàm số \(y = - 2{x^2} + 5x + 1\) có \(b = 5,a = - 2 \Rightarrow b \ne - 5a\) => Loại D Chọn C. Câu 22 (VD): Phương pháp: Chia cả tử và mẫu biểu thức P cho \(\cos \alpha \) và biểu diễn biểu thức P theo \(\tan \alpha \). Cách giải: Ta có \(P = \frac{{6\sin \alpha - 7\cos \alpha }}{{6\cos \alpha + 7\sin \alpha }} = \frac{{6\frac{{\sin \alpha }}{{\cos \alpha }} - 7}}{{6 + 7\frac{{\sin \alpha }}{{\cos \alpha }}}} = \frac{{6\tan \alpha - 7}}{{6 + 7\tan \alpha }} = \frac{5}{3}\) Chọn B. Câu 23 (TH): Phương pháp: Áp dụng định nghĩa tích của vecto với một số, quy tắc cộng vecto để phân tích vecto. Cách giải:
Ta có: \(\overrightarrow {AD} {\rm{\;}} = \overrightarrow {AB} {\rm{\;}} + \overrightarrow {BD} {\rm{\;}} = \overrightarrow {AB} {\rm{\;}} + \frac{1}{3}\overrightarrow {BC} \) \({\mkern 1mu} = \overrightarrow {AB} {\rm{\;}} + \frac{1}{3}\left( {\overrightarrow {BA} {\rm{\;}} + \overrightarrow {AC} } \right)\)\( = \overrightarrow {AB} {\rm{\;}} - \frac{1}{3}\overrightarrow {AB} {\rm{\;}} + \frac{1}{3}\overrightarrow {AC} \)\({\mkern 1mu} {\mkern 1mu} = \frac{2}{3}\overrightarrow {AB} {\rm{\;}} + \frac{1}{3}\overrightarrow {AC} \) \( \Rightarrow \overrightarrow {AD} {\rm{\;}} = \frac{2}{3}\overrightarrow {AB} {\rm{\;}} + \frac{1}{3}\overrightarrow {AC} \) Chọn A. Câu 24 (NB): Phương pháp: Áp dụng các tính chất của phép nhân véctơ với một số. Cách giải: Với \(\vec a,{\mkern 1mu} {\mkern 1mu} \vec b\) tùy ý; \(\forall k,{\mkern 1mu} {\mkern 1mu} h \in \mathbb{R}\) ta có: +) \(0.\vec a = 0\) là đáp án sai vì \(0.\vec a = \vec 0\). +) \(k\left( {\vec a + \vec b} \right) = k\vec a + k\vec b\) (đúng) +) \(k.\vec 0 = \vec 0\) (đúng) +) \(h\left( {k\vec a} \right) = \left( {hk} \right)\vec a\) (đúng) Chọn A. Câu 25 (NB): Cách giải: Dùng Pitago tính được \(AC = 8\), suy ra \(p = \frac{{AB + BC + CA}}{2} = 12\) Diện tích tam giác vuông \(S = \frac{1}{2}AB.AC = 24\) .Lại có \(S = p.r \Rightarrow r = \frac{S}{p}2cm\) Chọn C. Câu 26 (TH): Cách giải: Chu vi của miếng đất là \(P = 2\left[ {x + y} \right] = 2.\left[ {\left( {43 \pm 0,5} \right) + \left( {63 \pm 0,5} \right)} \right]\) \( = 2.\left[ {\left( {43 + 63} \right) \pm \left( {0,5 + 0,5} \right)} \right] = 212 \pm 2.\) Chọn B. Câu 27 (TH): Phương pháp: Khoảng biến thiên, kí hiệu là R, là hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất. Cách giải: Giá trị lớn nhất là 20 Giá trị nhỏ nhất là 1 Vậy khoảng biến thiên của mẫu số liệu là: \(R = 20 - 1 = 19\) Chọn C. Câu 28 (TH): Cách giải: Đồ thị hàm số cắt trục tung tại điểm \(\left( {0\,\,;\,\, - 1} \right)\) nên \(c = - 1\). Tọa độ đỉnh \(I\left( {1\,\,;\, - 2} \right)\), ta có phương trình: \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 1\\a{.1^2} + b.1 - 1 = - 2\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}2a + b = 0\\a + b = - 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\). Vậy parabol cần tìm là: \(y = {x^2} - 2x - 1\). Chọn C. Câu 29 (TH): Cách giải: Hàm số \(y = - {x^2} + 4x - 5\) có \(a = - 1 < 0\), nên loại C,D. Hoành độ đỉnh \({x_I} = - \frac{b}{{2a}} = - \frac{4}{{2.( - 1)}} = 2\) Chọn B. Câu 30 (NB): Phương pháp: Sử dụng định nghĩa tích vô hướng của hai vectơ:\(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\) Cách giải: Xác định được góc \(\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right)\) là góc ngoài của góc \(\widehat B\) nên \(\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = {120^ \circ }\) Do đó \(\overrightarrow {AB} .\overrightarrow {BC} = AB.BC.\cos \left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = a.a.\cos {120^ \circ } = - \frac{{{a^2}}}{2}\) Chọn C. Phần 2: Tự luận (4 điểm) Câu 1 (VD): Phương pháp: a) * Số trung bình của mẫu số liệu \({x_1},{\mkern 1mu} {\mkern 1mu} {x_2},{\mkern 1mu} {\mkern 1mu} ....,{\mkern 1mu} {\mkern 1mu} {x_n}\) kí hiệu là \(\bar x\), được tính bằng công thức: \(\bar x = \frac{{{m_1}{x_2} + {m_2}{x_2} + ... + {m_k}{x_k}}}{n}\) Trong đó mk là tần số của giá trị xk và \(n = {m_1} + {m_2} + ... + {m_k}\). Cách giải: a) Mẫu số liệu thống kê nhiệt độ nhận được từ bảng là: 23 25 26 27 27 27 27 21 19 18 b) * Nhiệt độ trung bình của 10 ngày liên tiếp ở Nghệ An cuối tháng 01 năm 2022 là: \(\bar x = \frac{{23 + 25 + 26 + 27 + 27 + 27 + 27 + 21 + 19 + 18}}{{10}} = 24\) (\(^oC\)) * Phương sai \({s^2} = \frac{1}{{10}}({23^2} + {25^2} + {26^2} + {4.27^2} + {21^2} + {19^2} + {18^2}) - {24^2} = 11,2\) * Độ lệch chuẩn \(s = \sqrt {11,2} \approx 3,35\) Câu 2 (VD): Cách giải:
a) Gọi I là trung điểm \({\rm{BC}}\) ta có: \(|\overrightarrow {{\rm{MB}}} + \overrightarrow {{\rm{MC}}} | = |\overrightarrow {{\rm{MB}}} - \overrightarrow {{\rm{MC}}} | \Leftrightarrow {\rm{ }}|\overrightarrow {{\rm{MI}}} | = |\overrightarrow {{\rm{CB}}} | \Leftrightarrow {\rm{MI}} = \frac{{{\rm{BC}}}}{2}\) Vậy tập hợp điểm \({\rm{M}}\) là đường tròn tâm \({\rm{I}}\), bán kính \({\rm{R}} = \frac{{{\rm{BC}}}}{2}\). b) Gọi \({\rm{K}}\) là điểm thoả mān: L là điểm thoả mān: \(3\overrightarrow {{\rm{LB}}} + 2\overrightarrow {{\rm{LC}}} = \vec 0\) Ta có: \(|2\overrightarrow {{\rm{MA}}} + 3\overrightarrow {{\rm{MB}}} | = |3\overrightarrow {{\rm{MB}}} + 2\overrightarrow {{\rm{MC}}} |\) \( \Leftrightarrow |5\overrightarrow {{\rm{MK}}} | = |5\overrightarrow {{\rm{ML}}} | \Leftrightarrow {\rm{MK}} = {\rm{ML}}\) \( \Rightarrow \) Tập hợp điểm \({\rm{M}}\) là đường trung trực của đoạn thẳng \({\rm{KL}}\). c) Với I là trung điểm của \({\rm{BC}}\). Gọi \({\rm{J}}\) là điểm thoả mān: \(4\overrightarrow {{\rm{JA}}} + \overrightarrow {{\rm{JB}}} + \overrightarrow {{\rm{JC}}} = \vec 0\) Ta có: \(|4\overrightarrow {{\rm{MA}}} + \overrightarrow {{\rm{MB}}} + \overrightarrow {{\rm{MC}}} | = |2\overrightarrow {{\rm{MA}}} - \overrightarrow {{\rm{MB}}} - \overrightarrow {{\rm{MC}}} |\) \( \Leftrightarrow |6\overrightarrow {{\rm{MJ}}} | = |2\overrightarrow {{\rm{MA}}} - 2\overrightarrow {{\rm{MI}}} | \Leftrightarrow |6\overrightarrow {{\rm{MJ}}} | = |2\overrightarrow {{\rm{IA}}} | \Leftrightarrow {\rm{MJ}} = \frac{1}{3}{\rm{IA}} = \) const Vậy tập hợp điểm \(M\) là đường tròn tâm \({\rm{J}}\) bán kính \({\rm{R}} = \frac{1}{3}{\rm{IA}}\). Câu 3 (VD): Cách giải: Parabol (P) \(y = a{x^2} + bx + c\) giao với Oy tại điểm có tọa độ \((0;c)\), do đó \(c = - 1\) (P) có hoành độ đỉnh \({x_I} = - \frac{b}{{2a}} = 1 \Rightarrow b = - 2a\) Điểm \(I(1; - 2)\) thuộc (P) nên \(a{.1^2} + b.1 - 1 = - 2\) hay \(a + b = - 1\) Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b = - 1\\b = - 2a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = - 2\\a = 1\end{array} \right.\) Vậy parabol cần tìm là \(y = {x^2} - 2x - 1\) * Vẽ parabol Đỉnh \(I(1; - 2)\) Trục đối xứng \(x = 1\) Giao với Oy tại A(0;-1), lấy điểm B(2;-1) đối xứng với A qua trục đối xứng Lấy điểm C(-1;2) và D(3;2) thuộc đồ thị.
Quảng cáo
|